c c This is a sample main program, calculating the T01 model field produced by the c external (magnetospheric) sources of the geomagnetic field at a specified point c of space {XGSM,YGSM,ZGSM}. The earth's dipole tilt angle PS should be specified c in radians, the solar wind ram pressure PDYN in nanoPascals, Dst index, IMF By c and Bz components in nT. The two IMF-related indices G1 and G2 take into account c the IMF and solar wind conditions during the preceding 1-hour interval; their c exact definition is given in the paper "A new data-based model of the near c magnetosphere magnetic field. 2. Parameterization and fitting to observations". c The paper is available online from: c c http://modelweb.gsfc.nasa.gov/magnetos/data-based/Paper220.pdf c c See also a companion paper describing the mathematical structure of the model: c c http://modelweb.gsfc.nasa.gov/magnetos/data-based/Paper219.pdf c DIMENSION PARMOD(10) c PRINT *, ' ENTER PS,PDYN,DST,BYIMF,BZIMF,G1,G2' READ *, PS,PDYN,DST,BYIMF,BZIMF,G1,G2 1 PRINT *, ' ENTER X,Y,Z' READ *, XGSM,YGSM,ZGSM C PARMOD(1)=PDYN PARMOD(2)=DST PARMOD(3)=BYIMF PARMOD(4)=BZIMF PARMOD(5)=G1 PARMOD(6)=G2 CALL T01_01 (0,PARMOD,PS,XGSM,YGSM,ZGSM,FXGSM,FYGSM,FZGSM) PRINT *, ' FXGSM,FYGSM,FZGSM=',FXGSM,FYGSM,FZGSM GOTO 1 END c c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ C c SUBROUTINE T01_01 (IOPT,PARMOD,PS,X,Y,Z,BX,BY,BZ) c c RELEASE DATE OF THIS VERSION: AUGUST 8, 2001. c c LATEST MODIFICATIONS/BUGS REMOVED: JUNE 24, 2006: REPLACED COEFFICIENTS IN: c (i) DATA statement in FUNCTION AP, C (ii) DATA C_SY statement in SUBROUTINE FULL_RC, and c (iii) DATA A statement in SUBROUTINE T01_01. C This correction was needed because of a bug found in the symmetric ring current module. c Its impact is a minor (a few percent) change of the model field in the inner magnetosphere. C c-------------------------------------------------------------------- C A DATA-BASED MODEL OF THE EXTERNAL (I.E., WITHOUT EARTH'S CONTRIBUTION) PART OF THE C MAGNETOSPHERIC MAGNETIC FIELD, CALIBRATED BY C (1) SOLAR WIND PRESSURE PDYN (NANOPASCALS), C (2) DST (NANOTESLA), C (3) BYIMF, C (4) BZIMF (NANOTESLA) C (5) G1-INDEX C (6) G2-INDEX (SEE TSYGANENKO [2001] FOR AN EXACT DEFINITION OF THESE TWO INDICES) c THESE INPUT PARAMETERS SHOULD BE PLACED IN THE FIRST 6 ELEMENTS c OF THE ARRAY PARMOD(10). C C THE REST OF THE INPUT VARIABLES ARE: THE GEODIPOLE TILT ANGLE PS (RADIANS), C AND X,Y,Z - GSM POSITION (RE) C c IOPT IS JUST A DUMMY INPUT PARAMETER, NECESSARY TO MAKE THIS SUBROUTINE C COMPATIBLE WITH THE TRACING SOFTWARE PACKAGE (GEOPACK). IN THIS MODEL C IT DOES NOT AFFECT THE OUTPUT FIELD. c C******************************************************************************************* c** ATTENTION: THE MODEL IS BASED ON DATA TAKEN SUNWARD FROM X=-15Re, AND HENCE BECOMES * C** INVALID AT LARGER TAILWARD DISTANCES !!! * C******************************************************************************************* C c OUTPUT: GSM COMPONENTS OF THE EXTERNAL MAGNETIC FIELD (BX,BY,BZ, nanotesla) C COMPUTED AS A SUM OF CONTRIBUTIONS FROM PRINCIPAL FIELD SOURCES C c (C) Copr. 2001, Nikolai A. Tsyganenko, USRA, Code 690.2, NASA GSFC c Greenbelt, MD 20771, USA c C REFERENCE: C C N. A. Tsyganenko, A new data-based model of the near magnetosphere magnetic field: c 1. Mathematical structure. c 2. Parameterization and fitting to observations. c c (submitted to JGR, July 2001) C C c---------------------------------------------------------------------- c REAL PARMOD(10),PS,X,Y,Z,BX,BY,BZ REAL*8 A(43),PDYN,DST_AST,BYIMF,BZIMF,G1,G2,PSS,XX,YY,ZZ, * BXCF,BYCF,BZCF,BXT1,BYT1,BZT1,BXT2,BYT2,BZT2, * BXSRC,BYSRC,BZSRC,BXPRC,BYPRC,BZPRC, BXR11,BYR11,BZR11, * BXR12,BYR12,BZR12,BXR21,BYR21,BZR21,BXR22,BYR22,BZR22,HXIMF, * HYIMF,HZIMF,BBX,BBY,BBZ C DATA A /1.00000,2.47341,0.40791,0.30429,-0.10637,-0.89108,3.29350, * -0.05413,-0.00696,1.07869,-0.02314,-0.66173,-0.68018,-0.03246, * 0.02681,0.28062,0.16535,-0.02939,0.02639,-0.24891,-0.08063, * 0.08900,-0.02475,0.05887,0.57691,0.65256,-0.03230,2.24733, * 4.10546,1.13665,0.05506,0.97669,0.21164,0.64594,1.12556,0.01389, * 1.02978,0.02968,0.15821,9.00519,28.17582,1.35285,0.42279/ c c the disclaimer below is temporarily disabled: C c IF (X.LT.-20.) THEN c PRINT *, c * ' ATTENTION: THE MODEL IS VALID SUNWARD FROM X=-15 Re ONLY,' c PRINT *,' WHILE YOU ARE TRYING TO USE IT AT X=', X c PAUSE c ENDIF C PDYN=PARMOD(1) DST_AST=PARMOD(2)*0.8-13.*SQRT(PDYN) BYIMF=PARMOD(3) BZIMF=PARMOD(4) C G1=PARMOD(5) G2=PARMOD(6) PSS=PS XX=X YY=Y ZZ=Z C CALL EXTALL (0,0,0,0,A,43,PDYN,DST_AST,BYIMF,BZIMF,G1,G2, * PSS,XX,YY,ZZ,BXCF,BYCF,BZCF,BXT1,BYT1,BZT1,BXT2,BYT2,BZT2, * BXSRC,BYSRC,BZSRC,BXPRC,BYPRC,BZPRC, BXR11,BYR11,BZR11, * BXR12,BYR12,BZR12,BXR21,BYR21,BZR21,BXR22,BYR22,BZR22,HXIMF, * HYIMF,HZIMF,BBX,BBY,BBZ) C BX=BBX BY=BBY BZ=BBZ C RETURN END C C================================================================ SUBROUTINE EXTALL (IOPGEN,IOPT,IOPB,IOPR,A,NTOT, * PDYN,DST,BYIMF,BZIMF,VBIMF1,VBIMF2,PS,X,Y,Z, * BXCF,BYCF,BZCF,BXT1,BYT1,BZT1,BXT2,BYT2,BZT2, * BXSRC,BYSRC,BZSRC,BXPRC,BYPRC,BZPRC, BXR11,BYR11,BZR11, * BXR12,BYR12,BZR12,BXR21,BYR21,BZR21,BXR22,BYR22,BZR22,HXIMF, * HYIMF,HZIMF,BX,BY,BZ) C C IOPGEN - GENERAL OPTION FLAG: IOPGEN=0 - CALCULATE TOTAL FIELD C IOPGEN=1 - DIPOLE SHIELDING ONLY C IOPGEN=2 - TAIL FIELD ONLY C IOPGEN=3 - BIRKELAND FIELD ONLY C IOPGEN=4 - RING CURRENT FIELD ONLY C IOPGEN=5 - INTERCONNECTION FIELD ONLY C C IOPT - TAIL FIELD FLAG: IOPT=0 - BOTH MODES C IOPT=1 - MODE 1 ONLY C IOPT=2 - MODE 2 ONLY C C IOPB - BIRKELAND FIELD FLAG: IOPB=0 - ALL 4 TERMS C IOPB=1 - REGION 1, MODES 1 AND 2 C IOPB=2 - REGION 2, MODES 1 AND 2 C C IOPR - RING CURRENT FLAG: IOPR=0 - BOTH SRC AND PRC C IOPR=1 - SRC ONLY C IOPR=2 - PRC ONLY C IMPLICIT REAL * 8 (A - H, O - Z) C DIMENSION A(NTOT) C COMMON /TAIL/ DXSHIFT1,DXSHIFT2,D,DELTADY ! THE COMMON BLOCKS FORWARD NONLINEAR PARAMETERS COMMON /BIRKPAR/ XKAPPA1,XKAPPA2 COMMON /RCPAR/ SC_SY,SC_AS,PHI COMMON /G/ G COMMON /RH0/ RH0 C DATA A0_A,A0_S0,A0_X0 /34.586D0,1.1960D0,3.4397D0/ ! SHUE ET AL. PARAMETERS DATA DSIG /0.003D0/, RH0,RH2 /8.0D0,-5.2D0/ c XAPPA=(PDYN/2.)**A(39) ! NOW THIS IS A VARIABLE PARAMETER RH0=A(40) G=A(41) XAPPA3=XAPPA**3 XX=X*XAPPA YY=Y*XAPPA ZZ=Z*XAPPA C SPS=DSIN(PS) c X0=A0_X0/XAPPA AM=A0_A/XAPPA S0=A0_S0 c BPERP=DSQRT(BYIMF**2+BZIMF**2) C C CALCULATE THE IMF CLOCK ANGLE: C IF (BYIMF.EQ.0.D0.AND.BZIMF.EQ.0.D0) THEN THETA=0.D0 ELSE THETA=DATAN2(BYIMF,BZIMF) IF (THETA.LE.0.D0) THETA=THETA+6.283185307D0 ENDIF c CT=COS(THETA) ST=SIN(THETA) YS=Y*CT-Z*ST ZS=Z*CT+Y*ST STHETAH=SIN(THETA/2.)**2 C C CALCULATE "IMF" COMPONENTS OUTSIDE THE MAGNETOPAUSE LAYER (HENCE BEGIN WITH "O") C THEY ARE NEEDED ONLY IF THE POINT (X,Y,Z) IS WITHIN THE TRANSITION MAGNETOPAUSE LAYER C OR OUTSIDE THE MAGNETOSPHERE: C FACTIMF=A(24)+A(25)*STHETAH c OIMFX=0.D0 OIMFY=BYIMF*FACTIMF OIMFZ=BZIMF*FACTIMF c R=SQRT(X**2+Y**2+Z**2) XSS=X ZSS=Z 1 XSOLD=XSS ! BEGIN ITERATIVE SEARCH OF UNWARPED COORDS (TO FIND SIGMA) ZSOLD=ZSS RH=RH0+RH2*(ZSS/R)**2 SINPSAS=SPS/(1.D0+(R/RH)**3)**0.33333333D0 COSPSAS=DSQRT(1.D0-SINPSAS**2) ZSS=X*SINPSAS+Z*COSPSAS XSS=X*COSPSAS-Z*SINPSAS DD=DABS(XSS-XSOLD)+DABS(ZSS-ZSOLD) IF (DD.GT.1.D-6) GOTO 1 C END OF ITERATIVE SEARCH RHO2=Y**2+ZSS**2 ASQ=AM**2 XMXM=AM+XSS-X0 IF (XMXM.LT.0.) XMXM=0. ! THE BOUNDARY IS A CYLINDER TAILWARD OF X=X0-AM AXX0=XMXM**2 ARO=ASQ+RHO2 SIGMA=DSQRT((ARO+AXX0+SQRT((ARO+AXX0)**2-4.*ASQ*AXX0))/(2.*ASQ)) C C NOW, THERE ARE THREE POSSIBLE CASES: C (1) INSIDE THE MAGNETOSPHERE (SIGMA C (2) IN THE BOUNDARY LAYER C (3) OUTSIDE THE MAGNETOSPHERE AND B.LAYER C FIRST OF ALL, CONSIDER THE CASES (1) AND (2): C C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ IF (SIGMA.LT.S0+DSIG) THEN ! CASES (1) OR (2); CALCULATE THE MODEL FIELD C (WITH THE POTENTIAL "PENETRATED" INTERCONNECTION FIELD): C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C IF (IOPGEN.LE.1) THEN CALL SHLCAR3X3(XX,YY,ZZ,PS,CFX,CFY,CFZ) ! DIPOLE SHIELDING FIELD BXCF=CFX*XAPPA3 BYCF=CFY*XAPPA3 BZCF=CFZ*XAPPA3 ELSE BXCF=0.D0 BYCF=0.D0 BZCF=0.D0 ENDIF IF (IOPGEN.EQ.0.OR.IOPGEN.EQ.2) THEN DXSHIFT1=A(26)+A(27)*VBIMF2 DXSHIFT2=0.D0 D=A(28) DELTADY=A(29) CALL DEFORMED (IOPT,PS,XX,YY,ZZ, ! TAIL FIELD (THREE MODES) * BXT1,BYT1,BZT1,BXT2,BYT2,BZT2) ELSE BXT1=0.D0 BYT1=0.D0 BZT1=0.D0 BXT2=0.D0 BYT2=0.D0 BZT2=0.D0 ENDIF IF (IOPGEN.EQ.0.OR.IOPGEN.EQ.3) THEN XKAPPA1=A(35)+A(36)*VBIMF2 XKAPPA2=A(37)+A(38)*VBIMF2 CALL BIRK_TOT (IOPB,PS,XX,YY,ZZ,BXR11,BYR11,BZR11,BXR12,BYR12, * BZR12,BXR21,BYR21,BZR21,BXR22,BYR22,BZR22) ! BIRKELAND FIELD (TWO MODES FOR R1 AND TWO MODES FOR R2) ELSE BXR11=0.D0 BYR11=0.D0 BZR11=0.D0 BXR12=0.D0 BYR12=0.D0 BZR12=0.D0 BXR21=0.D0 BYR21=0.D0 BZR21=0.D0 BXR22=0.D0 BYR22=0.D0 BZR22=0.D0 ENDIF IF (IOPGEN.EQ.0.OR.IOPGEN.EQ.4) THEN PHI=1.5707963D0*DTANH(DABS(DST)/A(34)) ZNAM=DABS(DST) IF (ZNAM.LT.20.D0) ZNAM=20.D0 SC_SY=A(30)*(20.D0/ZNAM)**A(31) *XAPPA ! SC_AS=A(32)*(20.D0/ZNAM)**A(33) *XAPPA CALL FULL_RC(IOPR,PS,XX,YY,ZZ,BXSRC,BYSRC,BZSRC,BXPRC,BYPRC, * BZPRC) ! SHIELDED RING CURRENT (SRC AND PRC) ELSE BXSRC=0.D0 BYSRC=0.D0 BZSRC=0.D0 BXPRC=0.D0 BYPRC=0.D0 BZPRC=0.D0 ENDIF C IF (IOPGEN.EQ.0.OR.IOPGEN.EQ.5) THEN HXIMF=0.D0 HYIMF=BYIMF HZIMF=BZIMF ! THESE ARE COMPONENTS OF THE PENETRATED FIELD PER UNIT OF THE PENETRATION COEFFICIENT. C IN OTHER WORDS, THESE ARE DERIVATIVES OF THE PENETRATION FIELD COMPONENTS WITH RESPECT C TO THE PENETRATION COEFFICIENT. WE ASSUME THAT ONLY THE TRANSVERSE COMPONENT OF THE C FIELD PENETRATES INSIDE. ELSE HXIMF=0.D0 HYIMF=0.D0 HZIMF=0.D0 ENDIF C C----------------------------------------------------------- C C NOW, ADD UP ALL THE COMPONENTS: DLP1=(PDYN/2.D0)**A(42) DLP2=(PDYN/2.D0)**A(43) TAMP1=A(2)+A(3)*DLP1+A(4)*VBIMF1+A(5)*DST TAMP2=A(6)+A(7)*DLP2+A(8)*VBIMF1+A(9)*DST A_SRC=A(10)+A(11)*DST+A(12)*DSQRT(PDYN) A_PRC=A(13)+A(14)*DST+A(15)*DSQRT(PDYN) A_R11=A(16)+A(17)*VBIMF2 A_R12=A(18)+A(19)*VBIMF2 A_R21=A(20)+A(21)*VBIMF2 A_R22=A(22)+A(23)*VBIMF2 BBX=A(1)*BXCF+TAMP1*BXT1+TAMP2*BXT2+A_SRC*BXSRC+A_PRC*BXPRC * +A_R11*BXR11+A_R12*BXR12+A_R21*BXR21+A_R22*BXR22 * +A(24)*HXIMF+A(25)*HXIMF*STHETAH BBY=A(1)*BYCF+TAMP1*BYT1+TAMP2*BYT2+A_SRC*BYSRC+A_PRC*BYPRC * +A_R11*BYR11+A_R12*BYR12+A_R21*BYR21+A_R22*BYR22 * +A(24)*HYIMF+A(25)*HYIMF*STHETAH BBZ=A(1)*BZCF+TAMP1*BZT1+TAMP2*BZT2+A_SRC*BZSRC+A_PRC*BZPRC * +A_R11*BZR11+A_R12*BZR12+A_R21*BZR21+A_R22*BZR22 * +A(24)*HZIMF+A(25)*HZIMF*STHETAH c print *, ' from inside T01: Bz (T+RC)=', c + TAMP1*BZT1+TAMP2*BZT2+A_SRC*BZSRC c print *, ' from inside T01: Bz (CF)=',BZCF C C AND WE HAVE THE TOTAL EXTERNAL FIELD. C C NOW, LET US CHECK WHETHER WE HAVE THE CASE (1). IF YES - WE ARE DONE: C IF (SIGMA.LT.S0-DSIG) THEN ! (X,Y,Z) IS INSIDE THE MAGNETOSPHERE C------------------------------------------------------------------------- BX=BBX BY=BBY BZ=BBZ C------------------------------------------------------------------------- ELSE ! THIS IS THE MOST COMPLEX CASE: WE ARE INSIDE C THE INTERPOLATION REGION FINT=0.5*(1.-(SIGMA-S0)/DSIG) FEXT=0.5*(1.+(SIGMA-S0)/DSIG) C CALL DIPOLE (PS,X,Y,Z,QX,QY,QZ) BX=(BBX+QX)*FINT+OIMFX*FEXT -QX BY=(BBY+QY)*FINT+OIMFY*FEXT -QY BZ=(BBZ+QZ)*FINT+OIMFZ*FEXT -QZ c ENDIF ! THE CASES (1) AND (2) ARE EXHAUSTED; THE ONLY REMAINING C POSSIBILITY IS NOW THE CASE (3): C-------------------------------------------------------------------------- ELSE CALL DIPOLE (PS,X,Y,Z,QX,QY,QZ) BX=OIMFX-QX BY=OIMFY-QY BZ=OIMFZ-QZ ENDIF C END c C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ C SUBROUTINE SHLCAR3X3(X,Y,Z,PS,BX,BY,BZ) C C THIS S/R RETURNS THE SHIELDING FIELD FOR THE EARTH'S DIPOLE, C REPRESENTED BY 2x3x3=18 "CARTESIAN" HARMONICS, tilted with respect C to the z=0 plane (NB#4, p.74) C C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C The 36 coefficients enter in pairs in the amplitudes of the "cartesian" c harmonics (A(1)-A(36). c The 14 nonlinear parameters (A(37)-A(50) are the scales Pi,Ri,Qi,and Si C entering the arguments of exponents, sines, and cosines in each of the C 18 "Cartesian" harmonics PLUS TWO TILT ANGLES FOR THE CARTESIAN HARMONICS C (ONE FOR THE PSI=0 MODE AND ANOTHER FOR THE PSI=90 MODE) C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C IMPLICIT REAL * 8 (A - H, O - Z) C DIMENSION A(50) DATA A/-901.2327248,895.8011176,817.6208321,-845.5880889, *-83.73539535,86.58542841,336.8781402,-329.3619944,-311.2947120, *308.6011161,31.94469304,-31.30824526,125.8739681,-372.3384278, *-235.4720434,286.7594095,21.86305585,-27.42344605,-150.4874688, *2.669338538,1.395023949,-.5540427503,-56.85224007,3.681827033, *-43.48705106,5.103131905,1.073551279,-.6673083508,12.21404266, *4.177465543,5.799964188,-.3977802319,-1.044652977,.5703560010, *3.536082962,-3.222069852,9.620648151,6.082014949,27.75216226, *12.44199571,5.122226936,6.982039615,20.12149582,6.150973118, *4.663639687,15.73319647,2.303504968,5.840511214,.8385953499E-01, *.3477844929/ C P1=A(37) P2=A(38) P3=A(39) R1=A(40) R2=A(41) R3=A(42) Q1=A(43) Q2=A(44) Q3=A(45) S1=A(46) S2=A(47) S3=A(48) T1 =A(49) T2 =A(50) C CPS=DCOS(PS) SPS=DSIN(PS) S2PS=2.D0*CPS ! MODIFIED HERE (SIN(2*PS) INSTEAD OF SIN(3*PS)) C ST1=DSIN(PS*T1) CT1=DCOS(PS*T1) ST2=DSIN(PS*T2) CT2=DCOS(PS*T2) X1=X*CT1-Z*ST1 Z1=X*ST1+Z*CT1 X2=X*CT2-Z*ST2 Z2=X*ST2+Z*CT2 C C c MAKE THE TERMS IN THE 1ST SUM ("PERPENDICULAR" SYMMETRY): C C I=1: C SQPR= DSQRT(1.D0/P1**2+1.D0/R1**2) CYP = DCOS(Y/P1) SYP = DSIN(Y/P1) CZR = DCOS(Z1/R1) SZR = DSIN(Z1/R1) EXPR= DEXP(SQPR*X1) FX1 =-SQPR*EXPR*CYP*SZR HY1 = EXPR/P1*SYP*SZR FZ1 =-EXPR*CYP/R1*CZR HX1 = FX1*CT1+FZ1*ST1 HZ1 =-FX1*ST1+FZ1*CT1 SQPR= DSQRT(1.D0/P1**2+1.D0/R2**2) CYP = DCOS(Y/P1) SYP = DSIN(Y/P1) CZR = DCOS(Z1/R2) SZR = DSIN(Z1/R2) EXPR= DEXP(SQPR*X1) FX2 =-SQPR*EXPR*CYP*SZR HY2 = EXPR/P1*SYP*SZR FZ2 =-EXPR*CYP/R2*CZR HX2 = FX2*CT1+FZ2*ST1 HZ2 =-FX2*ST1+FZ2*CT1 SQPR= DSQRT(1.D0/P1**2+1.D0/R3**2) CYP = DCOS(Y/P1) SYP = DSIN(Y/P1) CZR = DCOS(Z1/R3) SZR = DSIN(Z1/R3) EXPR= DEXP(SQPR*X1) FX3 =-EXPR*CYP*(SQPR*Z1*CZR+SZR/R3*(X1+1.D0/SQPR)) HY3 = EXPR/P1*SYP*(Z1*CZR+X1/R3*SZR/SQPR) FZ3 =-EXPR*CYP*(CZR*(1.D0+X1/R3**2/SQPR)-Z1/R3*SZR) HX3 = FX3*CT1+FZ3*ST1 HZ3 =-FX3*ST1+FZ3*CT1 C C I=2: C SQPR= DSQRT(1.D0/P2**2+1.D0/R1**2) CYP = DCOS(Y/P2) SYP = DSIN(Y/P2) CZR = DCOS(Z1/R1) SZR = DSIN(Z1/R1) EXPR= DEXP(SQPR*X1) FX4 =-SQPR*EXPR*CYP*SZR HY4 = EXPR/P2*SYP*SZR FZ4 =-EXPR*CYP/R1*CZR HX4 = FX4*CT1+FZ4*ST1 HZ4 =-FX4*ST1+FZ4*CT1 SQPR= DSQRT(1.D0/P2**2+1.D0/R2**2) CYP = DCOS(Y/P2) SYP = DSIN(Y/P2) CZR = DCOS(Z1/R2) SZR = DSIN(Z1/R2) EXPR= DEXP(SQPR*X1) FX5 =-SQPR*EXPR*CYP*SZR HY5 = EXPR/P2*SYP*SZR FZ5 =-EXPR*CYP/R2*CZR HX5 = FX5*CT1+FZ5*ST1 HZ5 =-FX5*ST1+FZ5*CT1 SQPR= DSQRT(1.D0/P2**2+1.D0/R3**2) CYP = DCOS(Y/P2) SYP = DSIN(Y/P2) CZR = DCOS(Z1/R3) SZR = DSIN(Z1/R3) EXPR= DEXP(SQPR*X1) FX6 =-EXPR*CYP*(SQPR*Z1*CZR+SZR/R3*(X1+1.D0/SQPR)) HY6 = EXPR/P2*SYP*(Z1*CZR+X1/R3*SZR/SQPR) FZ6 =-EXPR*CYP*(CZR*(1.D0+X1/R3**2/SQPR)-Z1/R3*SZR) HX6 = FX6*CT1+FZ6*ST1 HZ6 =-FX6*ST1+FZ6*CT1 C C I=3: C SQPR= DSQRT(1.D0/P3**2+1.D0/R1**2) CYP = DCOS(Y/P3) SYP = DSIN(Y/P3) CZR = DCOS(Z1/R1) SZR = DSIN(Z1/R1) EXPR= DEXP(SQPR*X1) FX7 =-SQPR*EXPR*CYP*SZR HY7 = EXPR/P3*SYP*SZR FZ7 =-EXPR*CYP/R1*CZR HX7 = FX7*CT1+FZ7*ST1 HZ7 =-FX7*ST1+FZ7*CT1 SQPR= DSQRT(1.D0/P3**2+1.D0/R2**2) CYP = DCOS(Y/P3) SYP = DSIN(Y/P3) CZR = DCOS(Z1/R2) SZR = DSIN(Z1/R2) EXPR= DEXP(SQPR*X1) FX8 =-SQPR*EXPR*CYP*SZR HY8 = EXPR/P3*SYP*SZR FZ8 =-EXPR*CYP/R2*CZR HX8 = FX8*CT1+FZ8*ST1 HZ8 =-FX8*ST1+FZ8*CT1 SQPR= DSQRT(1.D0/P3**2+1.D0/R3**2) CYP = DCOS(Y/P3) SYP = DSIN(Y/P3) CZR = DCOS(Z1/R3) SZR = DSIN(Z1/R3) EXPR= DEXP(SQPR*X1) FX9 =-EXPR*CYP*(SQPR*Z1*CZR+SZR/R3*(X1+1.D0/SQPR)) HY9 = EXPR/P3*SYP*(Z1*CZR+X1/R3*SZR/SQPR) FZ9 =-EXPR*CYP*(CZR*(1.D0+X1/R3**2/SQPR)-Z1/R3*SZR) HX9 = FX9*CT1+FZ9*ST1 HZ9 =-FX9*ST1+FZ9*CT1 C A1=A(1)+A(2)*CPS A2=A(3)+A(4)*CPS A3=A(5)+A(6)*CPS A4=A(7)+A(8)*CPS A5=A(9)+A(10)*CPS A6=A(11)+A(12)*CPS A7=A(13)+A(14)*CPS A8=A(15)+A(16)*CPS A9=A(17)+A(18)*CPS BX=A1*HX1+A2*HX2+A3*HX3+A4*HX4+A5*HX5+A6*HX6+A7*HX7+A8*HX8+A9*HX9 BY=A1*HY1+A2*HY2+A3*HY3+A4*HY4+A5*HY5+A6*HY6+A7*HY7+A8*HY8+A9*HY9 BZ=A1*HZ1+A2*HZ2+A3*HZ3+A4*HZ4+A5*HZ5+A6*HZ6+A7*HZ7+A8*HZ8+A9*HZ9 c MAKE THE TERMS IN THE 2ND SUM ("PARALLEL" SYMMETRY): C C I=1 C SQQS= DSQRT(1.D0/Q1**2+1.D0/S1**2) CYQ = DCOS(Y/Q1) SYQ = DSIN(Y/Q1) CZS = DCOS(Z2/S1) SZS = DSIN(Z2/S1) EXQS= DEXP(SQQS*X2) FX1 =-SQQS*EXQS*CYQ*CZS *SPS HY1 = EXQS/Q1*SYQ*CZS *SPS FZ1 = EXQS*CYQ/S1*SZS *SPS HX1 = FX1*CT2+FZ1*ST2 HZ1 =-FX1*ST2+FZ1*CT2 SQQS= DSQRT(1.D0/Q1**2+1.D0/S2**2) CYQ = DCOS(Y/Q1) SYQ = DSIN(Y/Q1) CZS = DCOS(Z2/S2) SZS = DSIN(Z2/S2) EXQS= DEXP(SQQS*X2) FX2 =-SQQS*EXQS*CYQ*CZS *SPS HY2 = EXQS/Q1*SYQ*CZS *SPS FZ2 = EXQS*CYQ/S2*SZS *SPS HX2 = FX2*CT2+FZ2*ST2 HZ2 =-FX2*ST2+FZ2*CT2 SQQS= DSQRT(1.D0/Q1**2+1.D0/S3**2) CYQ = DCOS(Y/Q1) SYQ = DSIN(Y/Q1) CZS = DCOS(Z2/S3) SZS = DSIN(Z2/S3) EXQS= DEXP(SQQS*X2) FX3 =-SQQS*EXQS*CYQ*CZS *SPS HY3 = EXQS/Q1*SYQ*CZS *SPS FZ3 = EXQS*CYQ/S3*SZS *SPS HX3 = FX3*CT2+FZ3*ST2 HZ3 =-FX3*ST2+FZ3*CT2 C C I=2: C SQQS= DSQRT(1.D0/Q2**2+1.D0/S1**2) CYQ = DCOS(Y/Q2) SYQ = DSIN(Y/Q2) CZS = DCOS(Z2/S1) SZS = DSIN(Z2/S1) EXQS= DEXP(SQQS*X2) FX4 =-SQQS*EXQS*CYQ*CZS *SPS HY4 = EXQS/Q2*SYQ*CZS *SPS FZ4 = EXQS*CYQ/S1*SZS *SPS HX4 = FX4*CT2+FZ4*ST2 HZ4 =-FX4*ST2+FZ4*CT2 SQQS= DSQRT(1.D0/Q2**2+1.D0/S2**2) CYQ = DCOS(Y/Q2) SYQ = DSIN(Y/Q2) CZS = DCOS(Z2/S2) SZS = DSIN(Z2/S2) EXQS= DEXP(SQQS*X2) FX5 =-SQQS*EXQS*CYQ*CZS *SPS HY5 = EXQS/Q2*SYQ*CZS *SPS FZ5 = EXQS*CYQ/S2*SZS *SPS HX5 = FX5*CT2+FZ5*ST2 HZ5 =-FX5*ST2+FZ5*CT2 SQQS= DSQRT(1.D0/Q2**2+1.D0/S3**2) CYQ = DCOS(Y/Q2) SYQ = DSIN(Y/Q2) CZS = DCOS(Z2/S3) SZS = DSIN(Z2/S3) EXQS= DEXP(SQQS*X2) FX6 =-SQQS*EXQS*CYQ*CZS *SPS HY6 = EXQS/Q2*SYQ*CZS *SPS FZ6 = EXQS*CYQ/S3*SZS *SPS HX6 = FX6*CT2+FZ6*ST2 HZ6 =-FX6*ST2+FZ6*CT2 C C I=3: C SQQS= DSQRT(1.D0/Q3**2+1.D0/S1**2) CYQ = DCOS(Y/Q3) SYQ = DSIN(Y/Q3) CZS = DCOS(Z2/S1) SZS = DSIN(Z2/S1) EXQS= DEXP(SQQS*X2) FX7 =-SQQS*EXQS*CYQ*CZS *SPS HY7 = EXQS/Q3*SYQ*CZS *SPS FZ7 = EXQS*CYQ/S1*SZS *SPS HX7 = FX7*CT2+FZ7*ST2 HZ7 =-FX7*ST2+FZ7*CT2 SQQS= DSQRT(1.D0/Q3**2+1.D0/S2**2) CYQ = DCOS(Y/Q3) SYQ = DSIN(Y/Q3) CZS = DCOS(Z2/S2) SZS = DSIN(Z2/S2) EXQS= DEXP(SQQS*X2) FX8 =-SQQS*EXQS*CYQ*CZS *SPS HY8 = EXQS/Q3*SYQ*CZS *SPS FZ8 = EXQS*CYQ/S2*SZS *SPS HX8 = FX8*CT2+FZ8*ST2 HZ8 =-FX8*ST2+FZ8*CT2 SQQS= DSQRT(1.D0/Q3**2+1.D0/S3**2) CYQ = DCOS(Y/Q3) SYQ = DSIN(Y/Q3) CZS = DCOS(Z2/S3) SZS = DSIN(Z2/S3) EXQS= DEXP(SQQS*X2) FX9 =-SQQS*EXQS*CYQ*CZS *SPS HY9 = EXQS/Q3*SYQ*CZS *SPS FZ9 = EXQS*CYQ/S3*SZS *SPS HX9 = FX9*CT2+FZ9*ST2 HZ9 =-FX9*ST2+FZ9*CT2 A1=A(19)+A(20)*S2PS A2=A(21)+A(22)*S2PS A3=A(23)+A(24)*S2PS A4=A(25)+A(26)*S2PS A5=A(27)+A(28)*S2PS A6=A(29)+A(30)*S2PS A7=A(31)+A(32)*S2PS A8=A(33)+A(34)*S2PS A9=A(35)+A(36)*S2PS BX=BX+A1*HX1+A2*HX2+A3*HX3+A4*HX4+A5*HX5+A6*HX6+A7*HX7+A8*HX8 * +A9*HX9 BY=BY+A1*HY1+A2*HY2+A3*HY3+A4*HY4+A5*HY5+A6*HY6+A7*HY7+A8*HY8 * +A9*HY9 BZ=BZ+A1*HZ1+A2*HZ2+A3*HZ3+A4*HZ4+A5*HZ5+A6*HZ6+A7*HZ7+A8*HZ8 * +A9*HZ9 C RETURN END c c############################################################################ c C SUBROUTINE DEFORMED (IOPT,PS,X,Y,Z,BX1,BY1,BZ1,BX2,BY2,BZ2) C C IOPT - TAIL FIELD MODE FLAG: IOPT=0 - THE TWO TAIL MODES ARE ADDED UP C IOPT=1 - MODE 1 ONLY C IOPT=2 - MODE 2 ONLY C C CALCULATES GSM COMPONENTS OF TWO UNIT-AMPLITUDE TAIL FIELD MODES, C TAKING INTO ACCOUNT BOTH EFFECTS OF DIPOLE TILT: C WARPING IN Y-Z (DONE BY THE S/R WARPED) AND BENDING IN X-Z (DONE BY THIS SUBROUTINE) C IMPLICIT REAL*8 (A-H,O-Z) COMMON /RH0/ RH0 DATA RH2,IEPS /-5.2D0,3/ C C RH0,RH1,RH2, AND IEPS CONTROL THE TILT-RELATED DEFORMATION OF THE TAIL FIELD C SPS=DSIN(PS) CPS=DSQRT(1.D0-SPS**2) R2=X**2+Y**2+Z**2 R=SQRT(R2) ZR=Z/R RH=RH0+RH2*ZR**2 DRHDR=-ZR/R*2.D0*RH2*ZR DRHDZ= 2.D0*RH2*ZR/R C RRH=R/RH F=1.D0/(1.D0+RRH**IEPS)**(1.D0/IEPS) DFDR=-RRH**(IEPS-1)*F**(IEPS+1)/RH DFDRH=-RRH*DFDR c SPSAS=SPS*F CPSAS=DSQRT(1.D0-SPSAS**2) C XAS=X*CPSAS-Z*SPSAS ZAS=X*SPSAS+Z*CPSAS C FACPS=SPS/CPSAS*(DFDR+DFDRH*DRHDR)/R PSASX=FACPS*X PSASY=FACPS*Y PSASZ=FACPS*Z+SPS/CPSAS*DFDRH*DRHDZ C DXASDX=CPSAS-ZAS*PSASX DXASDY=-ZAS*PSASY DXASDZ=-SPSAS-ZAS*PSASZ DZASDX=SPSAS+XAS*PSASX DZASDY=XAS*PSASY DZASDZ=CPSAS+XAS*PSASZ FAC1=DXASDZ*DZASDY-DXASDY*DZASDZ FAC2=DXASDX*DZASDZ-DXASDZ*DZASDX FAC3=DZASDX*DXASDY-DXASDX*DZASDY C C DEFORM: C CALL WARPED(IOPT,PS,XAS,Y,ZAS,BXAS1,BYAS1,BZAS1,BXAS2,BYAS2,BZAS2) C BX1=BXAS1*DZASDZ-BZAS1*DXASDZ +BYAS1*FAC1 BY1=BYAS1*FAC2 BZ1=BZAS1*DXASDX-BXAS1*DZASDX +BYAS1*FAC3 BX2=BXAS2*DZASDZ-BZAS2*DXASDZ +BYAS2*FAC1 BY2=BYAS2*FAC2 BZ2=BZAS2*DXASDX-BXAS2*DZASDX +BYAS2*FAC3 RETURN END C C------------------------------------------------------------------ C SUBROUTINE WARPED (IOPT,PS,X,Y,Z,BX1,BY1,BZ1,BX2,BY2,BZ2) C C CALCULATES GSM COMPONENTS OF THE WARPED FIELD FOR TWO TAIL UNIT MODES. C THE WARPING DEFORMATION IS IMPOSED ON THE UNWARPED FIELD, COMPUTED C BY THE S/R "UNWARPED". THE WARPING PARAMETER G WAS OBTAINED BY LEAST C SQUARES FITTING TO THE ENTIRE DATASET. C C IOPT - TAIL FIELD MODE FLAG: IOPT=0 - THE TWO TAIL MODES ARE ADDED UP C IOPT=1 - MODE 1 ONLY C IOPT=2 - MODE 2 ONLY C IMPLICIT REAL*8 (A-H,O-Z) C COMMON /G/ G DGDX=0.D0 XL=20.D0 DXLDX=0.D0 SPS=DSIN(PS) RHO2=Y**2+Z**2 RHO=DSQRT(RHO2) IF (Y.EQ.0.D0.AND.Z.EQ.0.D0) THEN PHI=0.D0 CPHI=1.D0 SPHI=0.D0 ELSE PHI=DATAN2(Z,Y) CPHI=Y/RHO SPHI=Z/RHO ENDIF RR4L4=RHO/(RHO2**2+XL**4) F=PHI+G*RHO2*RR4L4*CPHI*SPS DFDPHI=1.D0-G*RHO2*RR4L4*SPHI*SPS DFDRHO=G*RR4L4**2*(3.D0*XL**4-RHO2**2)*CPHI*SPS DFDX=RR4L4*CPHI*SPS*(DGDX*RHO2-G*RHO*RR4L4*4.D0*XL**3*DXLDX) CF=DCOS(F) SF=DSIN(F) YAS=RHO*CF ZAS=RHO*SF CALL UNWARPED (IOPT,X,YAS,ZAS,BX_AS1,BY_AS1,BZ_AS1, * BX_AS2,BY_AS2,BZ_AS2) BRHO_AS = BY_AS1*CF+BZ_AS1*SF ! DEFORM THE 1ST MODE BPHI_AS = -BY_AS1*SF+BZ_AS1*CF BRHO_S = BRHO_AS*DFDPHI BPHI_S = BPHI_AS-RHO*(BX_AS1*DFDX+BRHO_AS*DFDRHO) BX1 = BX_AS1*DFDPHI BY1 = BRHO_S*CPHI-BPHI_S*SPHI BZ1 = BRHO_S*SPHI+BPHI_S*CPHI ! DONE BRHO_AS = BY_AS2*CF+BZ_AS2*SF ! DEFORM THE 2ND MODE BPHI_AS = -BY_AS2*SF+BZ_AS2*CF BRHO_S = BRHO_AS*DFDPHI BPHI_S = BPHI_AS-RHO*(BX_AS2*DFDX+BRHO_AS*DFDRHO) BX2 = BX_AS2*DFDPHI BY2 = BRHO_S*CPHI-BPHI_S*SPHI BZ2 = BRHO_S*SPHI+BPHI_S*CPHI ! DONE RETURN END C C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C SUBROUTINE UNWARPED (IOPT,X,Y,Z,BX1,BY1,BZ1,BX2,BY2,BZ2) C IOPT - TAIL FIELD MODE FLAG: IOPT=0 - THE TWO TAIL MODES ARE ADDED UP C IOPT=1 - MODE 1 ONLY C IOPT=2 - MODE 2 ONLY C C CALCULATES GSM COMPONENTS OF THE SHIELDED FIELD OF TWO TAIL MODES WITH UNIT C AMPLITUDES, WITHOUT ANY WARPING OR BENDING. NONLINEAR PARAMETERS OF THE MODES C ARE FORWARDED HERE VIA A COMMON BLOCK /TAIL/. C IMPLICIT REAL*8 (A-H,O-Z) C DIMENSION A1(60),A2(60) ! TAIL SHIELDING FIELD PARAMETERS FOR THE MODES #1 & #2 COMMON /TAIL/ DXSHIFT1,DXSHIFT2,D0,DELTADY C DATA DELTADX1,ALPHA1,XSHIFT1 /1.D0,1.1D0,6.D0/ DATA DELTADX2,ALPHA2,XSHIFT2 /0.D0,.25D0,4.D0/ DATA A1/-25.45869857,57.35899080,317.5501869,-2.626756717, *-93.38053698,-199.6467926,-858.8129729,34.09192395,845.4214929, *-29.07463068,47.10678547,-128.9797943,-781.7512093,6.165038619, *167.8905046,492.0680410,1654.724031,-46.77337920,-1635.922669, *40.86186772,-.1349775602,-.9661991179E-01,-.1662302354, *.002810467517,.2487355077,.1025565237,-14.41750229,-.8185333989, *11.07693629,.7569503173,-9.655264745,112.2446542,777.5948964, *-5.745008536,-83.03921993,-490.2278695,-1155.004209,39.08023320, *1172.780574,-39.44349797,-14.07211198,-40.41201127,-313.2277343, *2.203920979,8.232835341,197.7065115,391.2733948,-18.57424451, *-437.2779053,23.04976898,11.75673963,13.60497313,4.691927060, *18.20923547,27.59044809,6.677425469,1.398283308,2.839005878, *31.24817706,24.53577264/ DATA A2/-287187.1962,4970.499233,410490.1952,-1347.839052, *-386370.3240,3317.983750,-143462.3895,5706.513767,171176.2904, *250.8882750,-506570.8891,5733.592632,397975.5842,9771.762168, *-941834.2436,7990.975260,54313.10318,447.5388060,528046.3449, *12751.04453,-21920.98301,-21.05075617,31971.07875,3012.641612, *-301822.9103,-3601.107387,1797.577552,-6.315855803,142578.8406, *13161.93640,804184.8410,-14168.99698,-851926.6360,-1890.885671, *972475.6869,-8571.862853,26432.49197,-2554.752298,-482308.3431, *-4391.473324,105155.9160,-1134.622050,-74353.53091,-5382.670711, *695055.0788,-916.3365144,-12111.06667,67.20923358,-367200.9285, *-21414.14421,14.75567902,20.75638190,59.78601609,16.86431444, *32.58482365,23.69472951,17.24977936,13.64902647,68.40989058, *11.67828167/ DATA XM1,XM2/2*-12.D0/ IF (IOPT.EQ.2) GOTO 1 XSC1=(X-XSHIFT1-DXSHIFT1)*ALPHA1-XM1*(ALPHA1-1.D0) YSC1=Y*ALPHA1 ZSC1=Z*ALPHA1 D0SC1=D0*ALPHA1 ! HERE WE USE A SINGLE VALUE D0 OF THE THICKNESS FOR BOTH MODES CALL TAILDISK(D0SC1,DELTADX1,DELTADY,XSC1,YSC1,ZSC1,FX1,FY1,FZ1) CALL SHLCAR5X5(A1,X,Y,Z,DXSHIFT1,HX1,HY1,HZ1) BX1=FX1+HX1 BY1=FY1+HY1 BZ1=FZ1+HZ1 IF (IOPT.EQ.1) THEN BX2=0.D0 BY2=0.D0 BZ2=0.D0 RETURN ENDIF 1 XSC2=(X-XSHIFT2-DXSHIFT2)*ALPHA2-XM2*(ALPHA2-1.D0) YSC2=Y*ALPHA2 ZSC2=Z*ALPHA2 D0SC2=D0*ALPHA2 ! HERE WE USE A SINGLE VALUE D0 OF THE THICKNESS FOR BOTH MODES CALL TAILDISK(D0SC2,DELTADX2,DELTADY,XSC2,YSC2,ZSC2,FX2,FY2,FZ2) CALL SHLCAR5X5(A2,X,Y,Z,DXSHIFT2,HX2,HY2,HZ2) BX2=FX2+HX2 BY2=FY2+HY2 BZ2=FZ2+HZ2 IF (IOPT.EQ.2) THEN BX1=0.D0 BY1=0.D0 BZ1=0.D0 RETURN ENDIF RETURN END C C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ C SUBROUTINE TAILDISK(D0,DELTADX,DELTADY,X,Y,Z,BX,BY,BZ) c c THIS SUBROUTINE COMPUTES THE COMPONENTS OF THE TAIL CURRENT FIELD, C SIMILAR TO THAT DESCRIBED BY TSYGANENKO AND PEREDO (1994). THE C DIFFERENCE IS THAT NOW WE USE SPACEWARPING, AS DESCRIBED IN OUR C PAPER ON MODELING BIRKELAND CURRENTS (TSYGANENKO AND STERN, 1996) C INSTEAD OF SHEARING IT IN THE SPIRIT OF THE T89 TAIL MODEL. C IMPLICIT REAL*8 (A-H,O-Z) c DIMENSION F(5),B(5),C(5) C DATA F /-71.09346626D0,-1014.308601D0,-1272.939359D0, * -3224.935936D0,-44546.86232D0/ DATA B /10.90101242D0,12.68393898D0,13.51791954D0,14.86775017D0, * 15.12306404D0/ DATA C /.7954069972D0,.6716601849D0,1.174866319D0,2.565249920D0, * 10.01986790D0/ C RHO=DSQRT(X**2+Y**2) DRHODX=X/RHO DRHODY=Y/RHO DEX=DEXP(X/7.D0) D=D0+DELTADY*(Y/20.D0)**2 +DELTADX*DEX ! THE LAST TERM (INTRODUCED 10/11/2000) MAKES THE SHEET DDDY=DELTADY*Y*0.005D0 ! THICKEN SUNWARD, TO AVOID PROBLEMS IN THE SUBSOLAR REGION DDDX=DELTADX/7.D0*DEX C DZETA=DSQRT(Z**2+D**2) ! THIS IS THE SAME SIMPLE WAY TO SPREAD C OUT THE SHEET, AS THAT USED IN T89 DDZETADX=D*DDDX/DZETA DDZETADY=D*DDDY/DZETA DDZETADZ=Z/DZETA C DBX=0.D0 DBY=0.D0 DBZ=0.D0 C DO 1 I=1,5 C BI=B(I) CI=C(I) C S1=DSQRT((RHO+BI)**2+(DZETA+CI)**2) S2=DSQRT((RHO-BI)**2+(DZETA+CI)**2) DS1DRHO=(RHO+BI)/S1 DS2DRHO=(RHO-BI)/S2 DS1DDZ=(DZETA+CI)/S1 DS2DDZ=(DZETA+CI)/S2 C DS1DX=DS1DRHO*DRHODX +DS1DDZ*DDZETADX DS1DY=DS1DRHO*DRHODY + DS1DDZ*DDZETADY DS1DZ= DS1DDZ*DDZETADZ C DS2DX=DS2DRHO*DRHODX +DS2DDZ*DDZETADX DS2DY=DS2DRHO*DRHODY + DS2DDZ*DDZETADY DS2DZ= DS2DDZ*DDZETADZ C S1TS2=S1*S2 S1PS2=S1+S2 S1PS2SQ=S1PS2**2 FAC1=DSQRT(S1PS2SQ-(2.D0*BI)**2) AS=FAC1/(S1TS2*S1PS2SQ) DASDS1=(1.D0/(FAC1*S2)-AS/S1PS2*(S2*S2+S1*(3.D0*S1+4.D0*S2))) * /(S1*S1PS2) DASDS2=(1.D0/(FAC1*S1)-AS/S1PS2*(S1*S1+S2*(3.D0*S2+4.D0*S1))) * /(S2*S1PS2) C DASDX=DASDS1*DS1DX+DASDS2*DS2DX DASDY=DASDS1*DS1DY+DASDS2*DS2DY DASDZ=DASDS1*DS1DZ+DASDS2*DS2DZ C DBX=DBX-F(I)*X*DASDZ DBY=DBY-F(I)*Y*DASDZ 1 DBZ=DBZ+F(I)*(2.D0*AS+X*DASDX+Y*DASDY) BX=DBX BY=DBY BZ=DBZ RETURN END C C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ C C THIS CODE RETURNS THE SHIELDING FIELD REPRESENTED BY 5x5=25 "CARTESIAN" C HARMONICS C SUBROUTINE SHLCAR5X5(A,X,Y,Z,DSHIFT,HX,HY,HZ) C C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C The NLIN coefficients are the amplitudes of the "cartesian" c harmonics (A(1)-A(NLIN). c The NNP nonlinear parameters (A(NLIN+1)-A(NTOT) are the scales Pi and Ri C entering the arguments of exponents, sines, and cosines in each of the C NLIN "Cartesian" harmonics C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C IMPLICIT REAL * 8 (A - H, O - Z) C DIMENSION A(60) C DHX=0.D0 DHY=0.D0 DHZ=0.D0 L=0 C DO 2 I=1,5 RP=1.D0/A(50+I) CYPI=DCOS(Y*RP) SYPI=DSIN(Y*RP) C DO 2 K=1,5 RR=1.D0/A(55+K) SZRK=DSIN(Z*RR) CZRK=DCOS(Z*RR) SQPR=DSQRT(RP**2+RR**2) EPR=DEXP(X*SQPR) C DBX=-SQPR*EPR*CYPI*SZRK DBY= RP*EPR*SYPI*SZRK DBZ=-RR*EPR*CYPI*CZRK L=L+2 COEF=A(L-1)+A(L)*DSHIFT DHX=DHX+COEF*DBX DHY=DHY+COEF*DBY DHZ=DHZ+COEF*DBZ c 2 CONTINUE HX=DHX HY=DHY HZ=DHZ C RETURN END c c %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C SUBROUTINE BIRK_TOT (IOPB,PS,X,Y,Z,BX11,BY11,BZ11,BX12,BY12,BZ12, * BX21,BY21,BZ21,BX22,BY22,BZ22) C C IOPB - BIRKELAND FIELD MODE FLAG: C IOPB=0 - ALL COMPONENTS C IOPB=1 - REGION 1, MODES 1 & 2 C IOPB=2 - REGION 2, MODES 1 & 2 C IMPLICIT REAL*8 (A-H,O-Z) DIMENSION SH11(86),SH12(86),SH21(86),SH22(86) COMMON /BIRKPAR/ XKAPPA1,XKAPPA2 ! INPUT PARAMETERS, SPECIFIED FROM S/R EXTALL COMMON /DPHI_B_RHO0/ DPHI,B,RHO_0,XKAPPA ! PARAMETERS, CONTROLLING THE DAY-NIGHT ASYMMETRY OF F.A.C. DATA SH11/46488.84663,-15541.95244,-23210.09824,-32625.03856, *-109894.4551,-71415.32808,58168.94612,55564.87578,-22890.60626, *-6056.763968,5091.368100,239.7001538,-13899.49253,4648.016991, *6971.310672,9699.351891,32633.34599,21028.48811,-17395.96190, *-16461.11037,7447.621471,2528.844345,-1934.094784,-588.3108359, *-32588.88216,10894.11453,16238.25044,22925.60557,77251.11274, *50375.97787,-40763.78048,-39088.60660,15546.53559,3559.617561, *-3187.730438,309.1487975,88.22153914,-243.0721938,-63.63543051, *191.1109142,69.94451996,-187.9539415,-49.89923833,104.0902848, *-120.2459738,253.5572433,89.25456949,-205.6516252,-44.93654156, *124.7026309,32.53005523,-98.85321751,-36.51904756,98.88241690, *24.88493459,-55.04058524,61.14493565,-128.4224895,-45.35023460, *105.0548704,-43.66748755,119.3284161,31.38442798,-92.87946767, *-33.52716686,89.98992001,25.87341323,-48.86305045,59.69362881, *-126.5353789,-44.39474251,101.5196856,59.41537992,41.18892281, *80.86101200,3.066809418,7.893523804,30.56212082,10.36861082, *8.222335945,19.97575641,2.050148531,4.992657093,2.300564232, *.2256245602,-.05841594319/ DATA SH12/210260.4816,-1443587.401,-1468919.281,281939.2993, *-1131124.839,729331.7943,2573541.307,304616.7457,468887.5847, *181554.7517,-1300722.650,-257012.8601,645888.8041,-2048126.412, *-2529093.041,571093.7972,-2115508.353,1122035.951,4489168.802, *75234.22743,823905.6909,147926.6121,-2276322.876,-155528.5992, *-858076.2979,3474422.388,3986279.931,-834613.9747,3250625.781, *-1818680.377,-7040468.986,-414359.6073,-1295117.666,-346320.6487, *3565527.409,430091.9496,-.1565573462,7.377619826,.4115646037, *-6.146078880,3.808028815,-.5232034932,1.454841807,-12.32274869, *-4.466974237,-2.941184626,-.6172620658,12.64613490,1.494922012, *-21.35489898,-1.652256960,16.81799898,-1.404079922,-24.09369677, *-10.99900839,45.94237820,2.248579894,31.91234041,7.575026816, *-45.80833339,-1.507664976,14.60016998,1.348516288,-11.05980247, *-5.402866968,31.69094514,12.28261196,-37.55354174,4.155626879, *-33.70159657,-8.437907434,36.22672602,145.0262164,70.73187036, *85.51110098,21.47490989,24.34554406,31.34405345,4.655207476, *5.747889264,7.802304187,1.844169801,4.867254550,2.941393119, *.1379899178,.06607020029/ DATA SH21/162294.6224,503885.1125,-27057.67122,-531450.1339, *84747.05678,-237142.1712,84133.61490,259530.0402,69196.05160, *-189093.5264,-19278.55134,195724.5034,-263082.6367,-818899.6923, *43061.10073,863506.6932,-139707.9428,389984.8850,-135167.5555, *-426286.9206,-109504.0387,295258.3531,30415.07087,-305502.9405, *100785.3400,315010.9567,-15999.50673,-332052.2548,54964.34639, *-152808.3750,51024.67566,166720.0603,40389.67945,-106257.7272, *-11126.14442,109876.2047,2.978695024,558.6019011,2.685592939, *-338.0004730,-81.99724090,-444.1102659,89.44617716,212.0849592, *-32.58562625,-982.7336105,-35.10860935,567.8931751,-1.917212423, *-260.2023543,-1.023821735,157.5533477,23.00200055,232.0603673, *-36.79100036,-111.9110936,18.05429984,447.0481000,15.10187415, *-258.7297813,-1.032340149,-298.6402478,-1.676201415,180.5856487, *64.52313024,209.0160857,-53.85574010,-98.52164290,14.35891214, *536.7666279,20.09318806,-309.7349530,58.54144539,67.45226850, *97.92374406,4.752449760,10.46824379,32.91856110,12.05124381, *9.962933904,15.91258637,1.804233877,6.578149088,2.515223491, *.1930034238,-.02261109942/ DATA SH22/-131287.8986,-631927.6885,-318797.4173,616785.8782, *-50027.36189,863099.9833,47680.20240,-1053367.944,-501120.3811, *-174400.9476,222328.6873,333551.7374,-389338.7841,-1995527.467, *-982971.3024,1960434.268,297239.7137,2676525.168,-147113.4775, *-3358059.979,-2106979.191,-462827.1322,1017607.960,1039018.475, *520266.9296,2627427.473,1301981.763,-2577171.706,-238071.9956, *-3539781.111,94628.16420,4411304.724,2598205.733,637504.9351, *-1234794.298,-1372562.403,-2.646186796,-31.10055575,2.295799273, *19.20203279,30.01931202,-302.1028550,-14.78310655,162.1561899, *.4943938056,176.8089129,-.2444921680,-100.6148929,9.172262228, *137.4303440,-8.451613443,-84.20684224,-167.3354083,1321.830393, *76.89928813,-705.7586223,18.28186732,-770.1665162,-9.084224422, *436.3368157,-6.374255638,-107.2730177,6.080451222,65.53843753, *143.2872994,-1028.009017,-64.22739330,547.8536586,-20.58928632, *597.3893669,10.17964133,-337.7800252,159.3532209,76.34445954, *84.74398828,12.76722651,27.63870691,32.69873634,5.145153451, *6.310949163,6.996159733,1.971629939,4.436299219,2.904964304, *.1486276863,.06859991529/ C XKAPPA=XKAPPA1 ! FORWARDED IN BIRK_1N2 X_SC=XKAPPA1-1.1D0 ! FORWARDED IN BIRK_SHL IF (IOPB.EQ.0.OR.IOPB.EQ.1) THEN CALL BIRK_1N2 (1,1,PS,X,Y,Z,FX11,FY11,FZ11) ! REGION 1, MODE 1 CALL BIRK_SHL (SH11,PS,X_SC,X,Y,Z,HX11,HY11,HZ11) BX11=FX11+HX11 BY11=FY11+HY11 BZ11=FZ11+HZ11 CALL BIRK_1N2 (1,2,PS,X,Y,Z,FX12,FY12,FZ12) ! REGION 1, MODE 2 CALL BIRK_SHL (SH12,PS,X_SC,X,Y,Z,HX12,HY12,HZ12) BX12=FX12+HX12 BY12=FY12+HY12 BZ12=FZ12+HZ12 ENDIF XKAPPA=XKAPPA2 ! FORWARDED IN BIRK_1N2 X_SC=XKAPPA2-1.0D0 ! FORWARDED IN BIRK_SHL IF (IOPB.EQ.0.OR.IOPB.EQ.2) THEN CALL BIRK_1N2 (2,1,PS,X,Y,Z,FX21,FY21,FZ21) ! REGION 2, MODE 1 CALL BIRK_SHL (SH21,PS,X_SC,X,Y,Z,HX21,HY21,HZ21) BX21=FX21+HX21 BY21=FY21+HY21 BZ21=FZ21+HZ21 CALL BIRK_1N2 (2,2,PS,X,Y,Z,FX22,FY22,FZ22) ! REGION 2, MODE 2 CALL BIRK_SHL (SH22,PS,X_SC,X,Y,Z,HX22,HY22,HZ22) BX22=FX22+HX22 BY22=FY22+HY22 BZ22=FZ22+HZ22 ENDIF RETURN END C c %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c c SUBROUTINE BIRK_1N2 (NUMB,MODE,PS,X,Y,Z,BX,BY,BZ) ! NB# 6, P.60 C C CALCULATES COMPONENTS OF REGION 1/2 FIELD IN SPHERICAL COORDS. DERIVED FROM THE S/R DIPDEF2C (WHICH C DOES THE SAME JOB, BUT INPUT/OUTPUT THERE WAS IN SPHERICAL COORDS, WHILE HERE WE USE CARTESIAN ONES) C C INPUT: NUMB=1 (2) FOR REGION 1 (2) CURRENTS C MODE=1 YIELDS SIMPLE SINUSOIDAL MLT VARIATION, WITH MAXIMUM CURRENT AT DAWN/DUSK MERIDIAN C WHILE MODE=2 YIELDS THE SECOND HARMONIC. C C IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A11(31),A12(31),A21(31),A22(31) COMMON /MODENUM/ M COMMON /DTHETA/ DTHETA COMMON /DPHI_B_RHO0/ DPHI,B,RHO_0,XKAPPA ! THESE PARAMETERS CONTROL DAY-NIGHT ASYMMETRY OF F.A.C., AS FOLLOWS: C (1) DPHI: HALF-DIFFERENCE (IN RADIANS) BETWEEN DAY AND NIGHT LATITUDE OF FAC OVAL AT IONOSPHERIC ALTITUDE; C TYPICAL VALUE: 0.06 C (2) B: AN ASYMMETRY FACTOR AT HIGH-ALTITUDES; FOR B=0, THE ONLY ASYMMETRY IS THAT FROM DPHI C TYPICAL VALUES: 0.35-0.70 C (3) RHO_0: A FIXED PARAMETER, DEFINING THE DISTANCE RHO, AT WHICH THE LATITUDE SHIFT GRADUALLY SATURATES AND C STOPS INCREASING C ITS VALUE WAS ASSUMED FIXED, EQUAL TO 7.0. C (4) XKAPPA: AN OVERALL SCALING FACTOR, WHICH CAN BE USED FOR CHANGING THE SIZE OF THE F.A.C. OVAL C DATA BETA,RH,EPS/0.9D0,10.D0,3.D0/ ! parameters of the tilt-dependent deformation of the untilted F.A.C. field DATA A11/.1618068350,-.1797957553,2.999642482,-.9322708978, *-.6811059760,.2099057262,-8.358815746,-14.86033550,.3838362986, *-16.30945494,4.537022847,2.685836007,27.97833029,6.330871059, *1.876532361,18.95619213,.9651528100,.4217195118,-.08957770020, *-1.823555887,.7457045438,-.5785916524,-1.010200918,.01112389357, *.09572927448,-.3599292276,8.713700514,.9763932955,3.834602998, *2.492118385,.7113544659/ DATA A12/.7058026940,-.2845938535,5.715471266,-2.472820880, *-.7738802408,.3478293930,-11.37653694,-38.64768867,.6932927651, *-212.4017288,4.944204937,3.071270411,33.05882281,7.387533799, *2.366769108,79.22572682,.6154290178,.5592050551,-.1796585105, *-1.654932210,.7309108776,-.4926292779,-1.130266095,-.009613974555, *.1484586169,-.2215347198,7.883592948,.02768251655,2.950280953, *1.212634762,.5567714182/ DATA A21/.1278764024,-.2320034273,1.805623266,-32.37241440, *-.9931490648,.3175085630,-2.492465814,-16.21600096,.2695393416, *-6.752691265,3.971794901,14.54477563,41.10158386,7.912889730, *1.258297372,9.583547721,1.014141963,.5104134759,-.1790430468, *-1.756358428,.7561986717,-.6775248254,-.04014016420,.01446794851, *.1200521731,-.2203584559,4.508963850,.8221623576,1.779933730, *1.102649543,.8867880020/ DATA A22/.4036015198,-.3302974212,2.827730930,-45.44405830, *-1.611103927,.4927112073,-.003258457559,-49.59014949,.3796217108, *-233.7884098,4.312666980,18.05051709,28.95320323,11.09948019, *.7471649558,67.10246193,.5667096597,.6468519751,-.1560665317, *-1.460805289,.7719653528,-.6658988668,.2515179349E-05, *.02426021891,.1195003324,-.2625739255,4.377172556,.2421190547, *2.503482679,1.071587299,.7247997430/ B=0.5 RHO_0=7.0 M=MODE IF (NUMB.EQ.1) THEN DPHI=0.055D0 DTHETA=0.06D0 ENDIF IF (NUMB.EQ.2) THEN DPHI=0.030D0 DTHETA=0.09D0 ENDIF Xsc=X*XKAPPA Ysc=Y*XKAPPA Zsc=Z*XKAPPA RHO=DSQRT(Xsc**2+Zsc**2) Rsc=DSQRT(Xsc**2+Ysc**2+Zsc**2) ! SCALED RHO2=RHO_0**2 IF (Xsc.EQ.0.D0.AND.Zsc.EQ.0.D0) THEN PHI=0.D0 ELSE PHI=DATAN2(-Zsc,Xsc) ! FROM CARTESIAN TO CYLINDRICAL (RHO,PHI,Y) ENDIF SPHIC=DSIN(PHI) CPHIC=DCOS(PHI) ! "C" means "CYLINDRICAL", TO DISTINGUISH FROM SPHERICAL PHI BRACK=DPHI+B*RHO2/(RHO2+1.D0)*(RHO**2-1.D0)/(RHO2+RHO**2) R1RH=(Rsc-1.D0)/RH PSIAS=BETA*PS/(1.D0+R1RH**EPS)**(1.D0/EPS) PHIS=PHI-BRACK*DSIN(PHI) -PSIAS DPHISPHI=1.D0-BRACK*DCOS(PHI) DPHISRHO=-2.D0*B*RHO2*RHO/(RHO2+RHO**2)**2 *DSIN(PHI) * +BETA*PS*R1RH**(EPS-1.D0)*RHO/(RH*Rsc* * (1.D0+R1RH**EPS)**(1.D0/EPS+1.D0)) DPHISDY= BETA*PS*R1RH**(EPS-1.D0)*Ysc/(RH*Rsc* * (1.D0+R1RH**EPS)**(1.D0/EPS+1.D0)) SPHICS=DSIN(PHIS) CPHICS=DCOS(PHIS) XS= RHO*CPHICS ZS=-RHO*SPHICS IF (NUMB.EQ.1) THEN IF (MODE.EQ.1) CALL TWOCONES (A11,XS,Ysc,ZS,BXS,BYAS,BZS) IF (MODE.EQ.2) CALL TWOCONES (A12,XS,Ysc,ZS,BXS,BYAS,BZS) ELSE IF (MODE.EQ.1) CALL TWOCONES (A21,XS,Ysc,ZS,BXS,BYAS,BZS) IF (MODE.EQ.2) CALL TWOCONES (A22,XS,Ysc,ZS,BXS,BYAS,BZS) ENDIF BRHOAS=BXS*CPHICS-BZS*SPHICS BPHIAS=-BXS*SPHICS-BZS*CPHICS BRHO_S=BRHOAS*DPHISPHI *XKAPPA ! SCALING BPHI_S=(BPHIAS-RHO*(BYAS*DPHISDY+BRHOAS*DPHISRHO)) *XKAPPA BY_S=BYAS*DPHISPHI *XKAPPA BX=BRHO_S*CPHIC-BPHI_S*SPHIC BY=BY_S BZ=-BRHO_S*SPHIC-BPHI_S*CPHIC RETURN END c C========================================================================= c SUBROUTINE TWOCONES (A,X,Y,Z,BX,BY,BZ) C C ADDS FIELDS FROM TWO CONES (NORTHERN AND SOUTHERN), WITH A PROPER SYMMETRY C OF THE CURRENT AND FIELD, CORRESPONDING TO THE REGION 1 BIRKELAND CURRENTS. (NB #6, P.58). C IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A(31) CALL ONE_CONE (A,X,Y,Z,BXN,BYN,BZN) CALL ONE_CONE (A,X,-Y,-Z,BXS,BYS,BZS) BX=BXN-BXS BY=BYN+BYS BZ=BZN+BZS RETURN END c C------------------------------------------------------------------------- C SUBROUTINE ONE_CONE(A,X,Y,Z,BX,BY,BZ) c c RETURNS FIELD COMPONENTS FOR A DEFORMED CONICAL CURRENT SYSTEM, FITTED TO A BIOSAVART FIELD c HERE ONLY THE NORTHERN CONE IS TAKEN INTO ACCOUNT. c IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A(31) COMMON /DTHETA/ DTHETA COMMON /MODENUM/ M DATA DR,DT/1.D-6,1.D-6/ ! JUST FOR NUMERICAL DIFFERENTIATION THETA0=A(31) RHO2=X**2+Y**2 RHO=DSQRT(RHO2) R=DSQRT(RHO2+Z**2) THETA=DATAN2(RHO,Z) PHI=DATAN2(Y,X) C C MAKE THE DEFORMATION OF COORDINATES: C RS=R_S(A,R,THETA) THETAS=THETA_S(A,R,THETA) PHIS=PHI C C CALCULATE FIELD COMPONENTS AT THE NEW POSITION (ASTERISKED): C CALL FIALCOS (RS,THETAS,PHIS,BTAST,BFAST,M,THETA0,DTHETA) ! MODE #M C C NOW TRANSFORM B{R,T,F}_AST BY THE DEFORMATION TENSOR: C C FIRST OF ALL, FIND THE DERIVATIVES: C DRSDR=(R_S(A,R+DR,THETA)-R_S(A,R-DR,THETA))/(2.D0*DR) DRSDT=(R_S(A,R,THETA+DT)-R_S(A,R,THETA-DT))/(2.D0*DT) DTSDR=(THETA_S(A,R+DR,THETA)-THETA_S(A,R-DR,THETA))/(2.D0*DR) DTSDT=(THETA_S(A,R,THETA+DT)-THETA_S(A,R,THETA-DT))/(2.D0*DT) STSST=DSIN(THETAS)/DSIN(THETA) RSR=RS/R BR =-RSR/R*STSST*BTAST*DRSDT ! NB#6, P.43 BRAST DOES NOT ENTER HERE BTHETA = RSR*STSST*BTAST*DRSDR ! (IT IS IDENTICALLY ZERO IN OUR CASE) BPHI = RSR*BFAST*(DRSDR*DTSDT-DRSDT*DTSDR) S=RHO/R C=Z/R SF=Y/RHO CF=X/RHO BE=BR*S+BTHETA*C BX=A(1)*(BE*CF-BPHI*SF) BY=A(1)*(BE*SF+BPHI*CF) BZ=A(1)*(BR*C-BTHETA*S) RETURN END C C===================================================================================== DOUBLE PRECISION FUNCTION R_S(A,R,THETA) IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A(31) C R_S=R+A(2)/R+A(3)*R/DSQRT(R**2+A(11)**2)+A(4)*R/(R**2+A(12)**2) *+(A(5)+A(6)/R+A(7)*R/DSQRT(R**2+A(13)**2)+A(8)*R/(R**2+A(14)**2))* * DCOS(THETA) *+(A(9)*R/DSQRT(R**2+A(15)**2)+A(10)*R/(R**2+A(16)**2)**2) * *DCOS(2.D0*THETA) C RETURN END C C----------------------------------------------------------------------------- C DOUBLE PRECISION FUNCTION THETA_S(A,R,THETA) IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A(31) c THETA_S=THETA+(A(17)+A(18)/R+A(19)/R**2 * +A(20)*R/DSQRT(R**2+A(27)**2))*DSIN(THETA) * +(A(21)+A(22)*R/DSQRT(R**2+A(28)**2) * +A(23)*R/(R**2+A(29)**2))*DSIN(2.D0*THETA) * +(A(24)+A(25)/R+A(26)*R/(R**2+A(30)**2))*DSIN(3.D0*THETA) C RETURN END C c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! c SUBROUTINE FIALCOS(R,THETA,PHI,BTHETA,BPHI,N,THETA0,DT) C C CONICAL MODEL OF BIRKELAND CURRENT FIELD; BASED ON THE OLD S/R FIALCO (OF 1990-91) C NB OF 1985-86-88, NOTE OF MARCH 5, BUT HERE BOTH INPUT AND OUTPUT ARE IN SPHERICAL CDS. C BTN, AND BPN ARE THE ARRAYS OF BTHETA AND BPHI (BTN(i), BPN(i) CORRESPOND TO i-th MODE). C ONLY FIRST N MODE AMPLITUDES ARE COMPUTED (N<=10). C THETA0 IS THE ANGULAR HALF-WIDTH OF THE CONE, DT IS THE ANGULAR H.-W. OF THE CURRENT LAYER C NOTE: BR=0 (BECAUSE ONLY RADIAL CURRENTS ARE PRESENT IN THIS MODEL) C IMPLICIT REAL*8 (A-H,O-Z) DIMENSION BTN(10),BPN(10),CCOS(10),SSIN(10) SINTE=DSIN(THETA) RO=R*SINTE COSTE=DCOS(THETA) SINFI=DSIN(PHI) COSFI=DCOS(PHI) TG=SINTE/(1.D0+COSTE) ! TAN(THETA/2) CTG=SINTE/(1.D0-COSTE) ! COT(THETA/2) C C TETANP=THETA0+DT TETANM=THETA0-DT IF(THETA.LT.TETANM) GOTO 1 TGP=DTAN(TETANP*0.5D0) TGM=DTAN(TETANM*0.5D0) TGM2=TGM*TGM TGP2=TGP*TGP 1 CONTINUE COSM1=1.D0 SINM1=0.D0 TM=1.D0 TGM2M=1.D0 TGP2M=1.D0 DO 2 M=1,N TM=TM*TG CCOS(M)=COSM1*COSFI-SINM1*SINFI SSIN(M)=SINM1*COSFI+COSM1*SINFI COSM1=CCOS(M) SINM1=SSIN(M) IF(THETA.LT.TETANM) THEN T=TM DTT=0.5D0*M*TM*(TG+CTG) DTT0=0.D0 ELSE IF(THETA.LT.TETANP) THEN TGM2M=TGM2M*TGM2 FC=1.D0/(TGP-TGM) FC1=1.D0/(2*M+1) TGM2M1=TGM2M*TGM TG21=1.D0+TG*TG T=FC*(TM*(TGP-TG)+FC1*(TM*TG-TGM2M1/TM)) DTT=0.5D0*M*FC*TG21*(TM/TG*(TGP-TG)-FC1*(TM-TGM2M1/(TM*TG))) DTT0=0.5D0*FC*((TGP+TGM)*(TM*TG-FC1*(TM*TG-TGM2M1/TM))+ * TM*(1.D0-TGP*TGM)-(1.D0+TGM2)*TGM2M/TM) ELSE TGP2M=TGP2M*TGP2 TGM2M=TGM2M*TGM2 FC=1.D0/(TGP-TGM) FC1=1.D0/(2*M+1) T=FC*FC1*(TGP2M*TGP-TGM2M*TGM)/TM DTT=-T*M*0.5D0*(TG+CTG) ENDIF BTN(M)=M*T*CCOS(M)/RO 2 BPN(M)=-DTT*SSIN(M)/R BTHETA=BTN(N) *800. BPHI =BPN(N) *800. RETURN END C C------------------------------------------------------------------------- C C SUBROUTINE BIRK_SHL (A,PS,X_SC,X,Y,Z,BX,BY,BZ) C IMPLICIT REAL * 8 (A - H, O - Z) DIMENSION A(86) C CPS=DCOS(PS) SPS=DSIN(PS) S3PS=2.D0*CPS C PST1=PS*A(85) PST2=PS*A(86) ST1=DSIN(PST1) CT1=DCOS(PST1) ST2=DSIN(PST2) CT2=DCOS(PST2) X1=X*CT1-Z*ST1 Z1=X*ST1+Z*CT1 X2=X*CT2-Z*ST2 Z2=X*ST2+Z*CT2 C L=0 GX=0.D0 GY=0.D0 GZ=0.D0 C DO 1 M=1,2 ! M=1 IS FOR THE 1ST SUM ("PERP." SYMMETRY) C AND M=2 IS FOR THE SECOND SUM ("PARALL." SYMMETRY) DO 2 I=1,3 P=A(72+I) Q=A(78+I) CYPI=DCOS(Y/P) CYQI=DCOS(Y/Q) SYPI=DSIN(Y/P) SYQI=DSIN(Y/Q) C DO 3 K=1,3 R=A(75+K) S=A(81+K) SZRK=DSIN(Z1/R) CZSK=DCOS(Z2/S) CZRK=DCOS(Z1/R) SZSK=DSIN(Z2/S) SQPR=DSQRT(1.D0/P**2+1.D0/R**2) SQQS=DSQRT(1.D0/Q**2+1.D0/S**2) EPR=DEXP(X1*SQPR) EQS=DEXP(X2*SQQS) C DO 4 N=1,2 ! N=1 IS FOR THE FIRST PART OF EACH COEFFICIENT C AND N=2 IS FOR THE SECOND ONE DO 5 NN=1,2 ! NN = 1,2 FURTHER SPLITS THE COEFFICIENTS INTO 2 PARTS, C TO TAKE INTO ACCOUNT THE SCALE FACTOR DEPENDENCE IF (M.EQ.1) THEN FX=-SQPR*EPR*CYPI*SZRK FY=EPR*SYPI*SZRK/P FZ=-EPR*CYPI*CZRK/R IF (N.EQ.1) THEN IF (NN.EQ.1) THEN HX=FX HY=FY HZ=FZ ELSE HX=FX*X_SC HY=FY*X_SC HZ=FZ*X_SC ENDIF ELSE IF (NN.EQ.1) THEN HX=FX*CPS HY=FY*CPS HZ=FZ*CPS ELSE HX=FX*CPS*X_SC HY=FY*CPS*X_SC HZ=FZ*CPS*X_SC ENDIF ENDIF ELSE ! M.EQ.2 FX=-SPS*SQQS*EQS*CYQI*CZSK FY=SPS/Q*EQS*SYQI*CZSK FZ=SPS/S*EQS*CYQI*SZSK IF (N.EQ.1) THEN IF (NN.EQ.1) THEN HX=FX HY=FY HZ=FZ ELSE HX=FX*X_SC HY=FY*X_SC HZ=FZ*X_SC ENDIF ELSE IF (NN.EQ.1) THEN HX=FX*S3PS HY=FY*S3PS HZ=FZ*S3PS ELSE HX=FX*S3PS*X_SC HY=FY*S3PS*X_SC HZ=FZ*S3PS*X_SC ENDIF ENDIF ENDIF L=L+1 IF (M.EQ.1) THEN HXR=HX*CT1+HZ*ST1 HZR=-HX*ST1+HZ*CT1 ELSE HXR=HX*CT2+HZ*ST2 HZR=-HX*ST2+HZ*CT2 ENDIF GX=GX+HXR*A(L) GY=GY+HY *A(L) 5 GZ=GZ+HZR*A(L) 4 CONTINUE 3 CONTINUE 2 CONTINUE 1 CONTINUE BX=GX BY=GY BZ=GZ RETURN END C C************************************************************************************ C SUBROUTINE FULL_RC (IOPR,PS,X,Y,Z,BXSRC,BYSRC,BZSRC,BXPRC,BYPRC, * BZPRC) C C CALCULATES GSM FIELD COMPONENTS OF THE SYMMETRIC (SRC) AND PARTIAL (PRC) COMPONENTS OF THE RING CURRENT C SRC PROVIDES A DEPRESSION OF -28 nT AT EARTH C PRC CORRESPONDS TO THE PRESSURE DIFFERENCE OF 2 nPa BETWEEN MIDNIGHT AND NOON RING CURRENT C PARTICLE PRESSURE AND YIELDS A DEPRESSION OF -17 nT AT X=-6Re C C SC_SY AND SC_PR ARE SCALING FACTORS FOR THE SYMMETRIC AND PARTIAL COMPONENTS: C VALUES LARGER THAN 1 RESULT IN SPATIALLY LARGER CURRENTS C C PHI IS THE ROTATION ANGLE IN RADIANS OF THE PARTIAL RING CURRENT (MEASURED FROM MIDNIGHT TOWARD DUSK) C C IOPR - A RING CURRENT CALCULATION FLAG (FOR LEAST-SQUARES FITTING ONLY): C IOPR=0 - BOTH SRC AND PRC FIELDS ARE CALCULATED C IOPR=1 - SRC ONLY C IOPR=2 - PRC ONLY C IMPLICIT REAL*8 (A-H,O-Z) DIMENSION C_SY(86),C_PR(86) COMMON /RCPAR/ SC_SY,SC_PR,PHI C DATA C_SY/-957.2534900,-817.5450246,583.2991249,758.8568270, ! CORRECTED VALUES (AS OF MAY 2006) *13.17029064,68.94173502,-15.29764089,-53.43151590,27.34311724, *149.5252826,-11.00696044,-179.7031814,953.0914774,817.2340042, *-581.0791366,-757.5387665,-13.10602697,-68.58155678,15.22447386, *53.15535633,-27.07982637,-149.1413391,10.91433279,179.3251739, *-6.028703251,1.303196101,-1.345909343,-1.138296330,-0.06642634348, *-0.3795246458,.07487833559,.2891156371,-.5506314391,-.4443105812, *0.2273682152,0.01086886655,-9.130025352,1.118684840,1.110838825, *.1219761512,-.06263009645,-.1896093743,.03434321042,.01523060688, *-.4913171541,-.2264814165,-.04791374574,.1981955976,-68.32678140, *-48.72036263,14.03247808,16.56233733,2.369921099,6.200577111, *-1.415841250,-0.8184867835,-3.401307527,-8.490692287,3.217860767, *-9.037752107,66.09298105,48.23198578,-13.67277141,-16.27028909, *-2.309299411,-6.016572391,1.381468849,0.7935312553,3.436934845, * 8.260038635,-3.136213782,8.833214943,8.041075485,8.024818618, * 35.54861873,12.55415215,1.738167799,3.721685353,23.06768025, * 6.871230562,6.806229878,21.35990364,1.687412298,3.500885177, * 0.3498952546,0.6595919814/ DATA C_PR/-64820.58481,-63965.62048,66267.93413,135049.7504, *-36.56316878,124.6614669,56.75637955,-87.56841077,5848.631425, *4981.097722,-6233.712207,-10986.40188,68716.52057,65682.69473, *-69673.32198,-138829.3568,43.45817708,-117.9565488,-62.14836263, *79.83651604,-6211.451069,-5151.633113,6544.481271,11353.03491, *23.72352603,-256.4846331,25.77629189,145.2377187,-4.472639098, *-3.554312754,2.936973114,2.682302576,2.728979958,26.43396781, *-9.312348296,-29.65427726,-247.5855336,-206.9111326,74.25277664, *106.4069993,15.45391072,16.35943569,-5.965177750,-6.079451700, *115.6748385,-35.27377307,-32.28763497,-32.53122151,93.74409310, *84.25677504,-29.23010465,-43.79485175,-6.434679514,-6.620247951, *2.443524317,2.266538956,-43.82903825,6.904117876,12.24289401, *17.62014361,152.3078796,124.5505289,-44.58690290,-63.02382410, *-8.999368955,-9.693774119,3.510930306,3.770949738,-77.96705716, *22.07730961,20.46491655,18.67728847,9.451290614,9.313661792, *644.7620970,418.2515954,7.183754387,35.62128817,19.43180682, *39.57218411,15.69384715,7.123215241,2.300635346,21.90881131, *-.01775839370,.3996346710/ CALL SRC_PRC (IOPR,SC_SY,SC_PR,PHI,PS,X,Y,Z,HXSRC,HYSRC,HZSRC, * HXPRC,HYPRC,HZPRC) X_SC=SC_SY-1.D0 IF (IOPR.EQ.0.OR.IOPR.EQ.1) THEN CALL RC_SHIELD (C_SY,PS,X_SC,X,Y,Z,FSX,FSY,FSZ) ELSE FSX=0.D0 FSY=0.D0 FSZ=0.D0 ENDIF X_SC=SC_PR-1.D0 IF (IOPR.EQ.0.OR.IOPR.EQ.2) THEN CALL RC_SHIELD (C_PR,PS,X_SC,X,Y,Z,FPX,FPY,FPZ) ELSE FPX=0.D0 FPY=0.D0 FPZ=0.D0 ENDIF BXSRC=HXSRC+FSX BYSRC=HYSRC+FSY BZSRC=HZSRC+FSZ BXPRC=HXPRC+FPX BYPRC=HYPRC+FPY BZPRC=HZPRC+FPZ RETURN END C--------------------------------------------------------------------------------------- C SUBROUTINE SRC_PRC (IOPR,SC_SY,SC_PR,PHI,PS,X,Y,Z,BXSRC,BYSRC, * BZSRC,BXPRC,BYPRC,BZPRC) C C RETURNS FIELD COMPONENTS FROM A MODEL RING CURRENT, INCLUDING ITS SYMMETRIC PART C AND A PARTIAL RING CURRENT, CLOSED VIA BIRKELAND CURRENTS. BASED ON RESULTS, DESCRIBED C IN A PAPER "MODELING THE INNER MAGNETOSPHERE: ASYMMETRIC RING CURRENT AND REGION 2 C BIRKELAND CURRENTS REVISITED" (JGR, DEC.2000). C C IOPR - A RING CURRENT CALCULATION FLAG (FOR LEAST-SQUARES FITTING ONLY): C IOPR=0 - BOTH SRC AND PRC FIELDS ARE CALCULATED C IOPR=1 - SRC ONLY C IOPR=2 - PRC ONLY C C SC_SY & SC_PR ARE SCALE FACTORS FOR THE ABOVE COMPONENTS; TAKING SC<1 OR SC>1 MAKES THE CURRENTS C SHRINK OR EXPAND, RESPECTIVELY. C C PHI IS THE ROTATION ANGLE (RADIANS) OF THE PARTIAL RING CURRENT (MEASURED FROM MIDNIGHT TOWARD DUSK) C IMPLICIT REAL*8 (A-H,O-Z) c c 1. TRANSFORM TO TILTED COORDINATES (i.e., SM coordinates): C CPS=DCOS(PS) SPS=DSIN(PS) XT=X*CPS-Z*SPS ZT=Z*CPS+X*SPS C C 2. SCALE THE COORDINATES FOR THE SYMMETRIC AND PARTIAL RC COMPONENTS: C XTS=XT/SC_SY ! SYMMETRIC YTS=Y /SC_SY ZTS=ZT/SC_SY XTA=XT/SC_PR ! PARTIAL YTA=Y /SC_PR ZTA=ZT/SC_PR C C 3. CALCULATE COMPONENTS OF THE TOTAL FIELD IN THE TILTED (SOLAR-MAGNETIC) COORDINATE SYSTEM: C C========== ONLY FOR LEAST SQUARES FITTING: BXS=0.D0 BYS=0.D0 BZS=0.D0 BXA_S=0.D0 BYA_S=0.D0 BZA_S=0.D0 BXA_QR=0.D0 BYA_QR=0.D0 BZA_Q=0.D0 C============================================ C C 3a. SYMMETRIC FIELD: C IF (IOPR.LE.1) CALL RC_SYMM(XTS,YTS,ZTS,BXS,BYS,BZS) IF (IOPR.EQ.0.OR.IOPR.EQ.2) * CALL PRC_SYMM(XTA,YTA,ZTA,BXA_S,BYA_S,BZA_S) C 3b. ROTATE THE SCALED SM COORDINATES BY PHI AROUND ZSM AXIS AND CALCULATE QUADRUPOLE PRC FIELD C IN THOSE COORDS: CP=DCOS(PHI) SP=DSIN(PHI) XR=XTA*CP-YTA*SP YR=XTA*SP+YTA*CP IF (IOPR.EQ.0.OR.IOPR.EQ.2) * CALL PRC_QUAD(XR,YR,ZTA,BXA_QR,BYA_QR,BZA_Q) C 3c. TRANSFORM THE QUADRUPOLE FIELD COMPONENTS BACK TO THE SM COORDS: C BXA_Q= BXA_QR*CP+BYA_QR*SP BYA_Q=-BXA_QR*SP+BYA_QR*CP C 3d. FIND THE TOTAL FIELD OF PRC (SYMM.+QUADR.) IN THE SM COORDS: C BXP=BXA_S+BXA_Q BYP=BYA_S+BYA_Q BZP=BZA_S+BZA_Q C C 4. TRANSFORM THE FIELDS OF BOTH PARTS OF THE RING CURRENT BACK TO THE GSM SYSTEM: C BXSRC=BXS*CPS+BZS*SPS ! SYMMETRIC RC BYSRC=BYS BZSRC=BZS*CPS-BXS*SPS C BXPRC=BXP*CPS+BZP*SPS ! PARTIAL RC BYPRC=BYP BZPRC=BZP*CPS-BXP*SPS C RETURN END C C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& C SUBROUTINE RC_SYMM (X,Y,Z,BX,BY,BZ) IMPLICIT REAL * 8 (A - H, O - Z) DATA DS,DC/1.D-2,0.99994999875D0/, D/1.D-4/,DRD/5.D3/ ! DS=SIN(THETA) AT THE BOUNDARY OF THE LINEARITY REGION; DC=SQRT(1-DS**2); DRD=1/(2*D) RHO2=X**2+Y**2 R2=RHO2+Z**2 R=DSQRT(R2) RP=R+D RM=R-D SINT=DSQRT(RHO2)/R COST=Z/R IF (SINT.LT.DS) THEN ! TOO CLOSE TO THE Z-AXIS; USING A LINEAR APPROXIMATION A_PHI~SINT, C TO AVOID THE SINGULARITY PROBLEM A=AP(R,DS,DC)/DS DARDR=(RP*AP(RP,DS,DC)-RM*AP(RM,DS,DC))*DRD FXY=Z*(2.D0*A-DARDR)/(R*R2) BX=FXY*X BY=FXY*Y BZ=(2.D0*A*COST**2+DARDR*SINT**2)/R ELSE THETA=DATAN2(SINT,COST) TP=THETA+D TM=THETA-D SINTP=DSIN(TP) SINTM=DSIN(TM) COSTP=DCOS(TP) COSTM=DCOS(TM) BR=(SINTP*AP(R,SINTP,COSTP)-SINTM*AP(R,SINTM,COSTM)) * /(R*SINT)*DRD BT=(RM*AP(RM,SINT,COST)-RP*AP(RP,SINT,COST))/R*DRD FXY=(BR+BT*COST/SINT)/R BX=FXY*X BY=FXY*Y BZ=BR*COST-BT*SINT ENDIF RETURN END c c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& C DOUBLE PRECISION FUNCTION AP(R,SINT,COST) C C Calculates azimuthal component of the vector potential of the symmetric c part of the model ring current. C IMPLICIT REAL * 8 (A - H, O - Z) LOGICAL PROX ! INDICATES WHETHER WE ARE TOO CLOSE TO THE AXIS OF SYMMETRY, WHERE THE INVERSION C OF DIPOLAR COORDINATES BECOMES INACCURATE DATA A1,A2,RRC1,DD1,RRC2,DD2,P1,R1,DR1,DLA1,P2,R2,DR2,DLA2,P3, *R3,DR3/ *-456.5289941,375.9055332,4.274684950,2.439528329,3.367557287, ! CORRECTED VALUES *3.146382545,-0.2291904607,3.746064740,1.508802177,0.5873525737, ! (UPDATED 04/20/06 (SEE NB#9, P.37)) *0.1556236119,4.993638842,3.324180497,0.4368407663,0.1855957207, *2.969226745,2.243367377/ PROX=.FALSE. SINT1=SINT COST1=COST IF (SINT1.LT.1.D-2) THEN ! TOO CLOSE TO Z-AXIS; USE LINEAR INTERPOLATION BETWEEN SINT=0 & SINT=0.01 SINT1=1.D-2 COST1=.99994999875 PROX=.TRUE. ENDIF ALPHA=SINT1**2/R ! R,THETA -> ALPHA,GAMMA GAMMA=COST1/R**2 ARG1=-((R-R1)/DR1)**2-(COST1/DLA1)**2 ARG2=-((R-R2)/DR2)**2-(COST1/DLA2)**2 ARG3=-((R-R3)/DR3)**2 IF (ARG1.LT.-500.D0) THEN ! TO PREVENT "FLOATING UNDERFLOW" CRASHES DEXP1=0.D0 ELSE DEXP1=DEXP(ARG1) ENDIF IF (ARG2.LT.-500.D0) THEN DEXP2=0.D0 ELSE DEXP2=DEXP(ARG2) ENDIF IF (ARG3.LT.-500.D0) THEN DEXP3=0.D0 ELSE DEXP3=DEXP(ARG3) ENDIF ALPHA_S=ALPHA*(1.D0+P1*DEXP1+P2*DEXP2+P3*DEXP3) ! ALPHA -> ALPHA_S (DEFORMED) GAMMA_S=GAMMA GAMMAS2=GAMMA_S**2 ALSQH=ALPHA_S**2/2.D0 ! ALPHA_S,GAMMA_S -> RS,SINTS,COSTS F=64.D0/27.D0*GAMMAS2+ALSQH**2 Q=(DSQRT(F)+ALSQH)**(1.D0/3.D0) C=Q-4.D0*GAMMAS2**(1.D0/3.D0)/(3.D0*Q) IF (C.LT.0.D0) C=0.D0 G=DSQRT(C**2+4.D0*GAMMAS2**(1.D0/3.D0)) RS=4.D0/((DSQRT(2.D0*G-C)+DSQRT(C))*(G+C)) COSTS=GAMMA_S*RS**2 SINTS=DSQRT(1.D0-COSTS**2) RHOS=RS*SINTS RHOS2=RHOS**2 ZS=RS*COSTS C c 1st loop: P=(RRC1+RHOS)**2+ZS**2+DD1**2 XK2=4.D0*RRC1*RHOS/P XK=SQRT(XK2) XKRHO12=XK*SQRT(RHOS) ! SEE NB#4, P.3 C XK2S=1.D0-XK2 DL=DLOG(1.D0/XK2S) ELK=1.38629436112d0+XK2S*(0.09666344259D0+XK2S*(0.03590092383+ * XK2S*(0.03742563713+XK2S*0.01451196212))) +DL* * (0.5D0+XK2S*(0.12498593597D0+XK2S*(0.06880248576D0+ * XK2S*(0.03328355346D0+XK2S*0.00441787012D0)))) ELE=1.D0+XK2S*(0.44325141463D0+XK2S*(0.0626060122D0+XK2S* * (0.04757383546D0+XK2S*0.01736506451D0))) +DL* * XK2S*(0.2499836831D0+XK2S*(0.09200180037D0+XK2S* * (0.04069697526D0+XK2S*0.00526449639D0))) C APHI1=((1.D0-XK2*0.5D0)*ELK-ELE)/XKRHO12 c c 2nd loop: P=(RRC2+RHOS)**2+ZS**2+DD2**2 XK2=4.D0*RRC2*RHOS/P XK=SQRT(XK2) XKRHO12=XK*SQRT(RHOS) ! SEE NB#4, P.3 C XK2S=1.D0-XK2 DL=DLOG(1.D0/XK2S) ELK=1.38629436112d0+XK2S*(0.09666344259D0+XK2S*(0.03590092383+ * XK2S*(0.03742563713+XK2S*0.01451196212))) +DL* * (0.5D0+XK2S*(0.12498593597D0+XK2S*(0.06880248576D0+ * XK2S*(0.03328355346D0+XK2S*0.00441787012D0)))) ELE=1.D0+XK2S*(0.44325141463D0+XK2S*(0.0626060122D0+XK2S* * (0.04757383546D0+XK2S*0.01736506451D0))) +DL* * XK2S*(0.2499836831D0+XK2S*(0.09200180037D0+XK2S* * (0.04069697526D0+XK2S*0.00526449639D0))) C APHI2=((1.D0-XK2*0.5D0)*ELK-ELE)/XKRHO12 AP=A1*APHI1+A2*APHI2 IF (PROX) AP=AP*SINT/SINT1 ! LINEAR INTERPOLATION, IF TOO CLOSE TO THE Z-AXIS C RETURN END c c@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ C SUBROUTINE PRC_SYMM (X,Y,Z,BX,BY,BZ) IMPLICIT REAL * 8 (A - H, O - Z) DATA DS,DC/1.D-2,0.99994999875D0/, D/1.D-4/,DRD/5.D3/ ! DS=SIN(THETA) AT THE BOUNDARY OF THE LINEARITY REGION; DC=SQRT(1-DS**2); DRD=1/(2*D) RHO2=X**2+Y**2 R2=RHO2+Z**2 R=DSQRT(R2) RP=R+D RM=R-D SINT=DSQRT(RHO2)/R COST=Z/R IF (SINT.LT.DS) THEN ! TOO CLOSE TO THE Z-AXIS; USING A LINEAR APPROXIMATION A_PHI~SINT, C TO AVOID THE SINGULARITY PROBLEM A=APPRC(R,DS,DC)/DS DARDR=(RP*APPRC(RP,DS,DC)-RM*APPRC(RM,DS,DC))*DRD FXY=Z*(2.D0*A-DARDR)/(R*R2) BX=FXY*X BY=FXY*Y BZ=(2.D0*A*COST**2+DARDR*SINT**2)/R ELSE THETA=DATAN2(SINT,COST) TP=THETA+D TM=THETA-D SINTP=DSIN(TP) SINTM=DSIN(TM) COSTP=DCOS(TP) COSTM=DCOS(TM) BR=(SINTP*APPRC(R,SINTP,COSTP)-SINTM*APPRC(R,SINTM,COSTM)) * /(R*SINT)*DRD BT=(RM*APPRC(RM,SINT,COST)-RP*APPRC(RP,SINT,COST))/R*DRD FXY=(BR+BT*COST/SINT)/R BX=FXY*X BY=FXY*Y BZ=BR*COST-BT*SINT ENDIF RETURN END c c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& C C DOUBLE PRECISION FUNCTION APPRC(R,SINT,COST) C C Calculates azimuthal component of the vector potential of the symmetric c part of the model PARTIAL ring current. C IMPLICIT REAL * 8 (A - H, O - Z) LOGICAL PROX DATA A1,A2,RRC1,DD1,RRC2,DD2,P1,ALPHA1,DAL1,BETA1,DG1,P2,ALPHA2, * DAL2,BETA2,DG2,BETA3,P3,ALPHA3,DAL3,BETA4,DG3,BETA5,Q0,Q1,ALPHA4, * DAL4,DG4,Q2,ALPHA5,DAL5,DG5,BETA6,BETA7 * /-80.11202281,12.58246758,6.560486035,1.930711037,3.827208119, *.7789990504,.3058309043,.1817139853,.1257532909,3.422509402, *.04742939676,-4.800458958,-.02845643596,.2188114228,2.545944574, *.00813272793,.35868244,103.1601001,-.00764731187,.1046487459, *2.958863546,.01172314188,.4382872938,.01134908150,14.51339943, *.2647095287,.07091230197,.01512963586,6.861329631,.1677400816, *.04433648846,.05553741389,.7665599464,.7277854652/ PROX=.FALSE. SINT1=SINT COST1=COST IF (SINT1.LT.1.D-2) THEN ! TOO CLOSE TO Z-AXIS; USE LINEAR INTERPOLATION BETWEEN SINT=0 & SINT=0.01 SINT1=1.D-2 COST1=.99994999875 PROX=.TRUE. ENDIF ALPHA=SINT1**2/R ! R,THETA -> ALPHA,GAMMA GAMMA=COST1/R**2 ARG1=-(GAMMA/DG1)**2 ARG2=-((ALPHA-ALPHA4)/DAL4)**2-(GAMMA/DG4)**2 IF (ARG1.LT.-500.D0) THEN ! TO PREVENT "FLOATING UNDERFLOW" CRASHES DEXP1=0.D0 ELSE DEXP1=DEXP(ARG1) ENDIF IF (ARG2.LT.-500.D0) THEN ! TO PREVENT "FLOATING UNDERFLOW" CRASHES DEXP2=0.D0 ELSE DEXP2=DEXP(ARG2) ENDIF ALPHA_S=ALPHA*(1.D0+P1/(1.D0+((ALPHA-ALPHA1)/DAL1)**2)**BETA1 * *DEXP1+P2*(ALPHA-ALPHA2)/(1.D0+((ALPHA-ALPHA2)/DAL2)**2)**BETA2 */(1.D0+(GAMMA/DG2)**2)**BETA3 *+P3*(ALPHA-ALPHA3)**2/(1.D0+((ALPHA-ALPHA3)/DAL3)**2)**BETA4 */(1.D0+(GAMMA/DG3)**2)**BETA5) ! ALPHA -> ALPHA_S (DEFORMED) GAMMA_S=GAMMA*(1.D0+Q0+Q1*(ALPHA-ALPHA4)*DEXP2 ! GAMMA -> GAMMA_ (DEFORMED) * +Q2*(ALPHA-ALPHA5)/(1.D0+((ALPHA-ALPHA5)/DAL5)**2)**BETA6 * /(1.D0+(GAMMA/DG5)**2)**BETA7) GAMMAS2=GAMMA_S**2 ALSQH=ALPHA_S**2/2.D0 ! ALPHA_S,GAMMA_S -> RS,SINTS,COSTS F=64.D0/27.D0*GAMMAS2+ALSQH**2 Q=(DSQRT(F)+ALSQH)**(1.D0/3.D0) C=Q-4.D0*GAMMAS2**(1.D0/3.D0)/(3.D0*Q) IF (C.LT.0.D0) C=0.D0 G=DSQRT(C**2+4.D0*GAMMAS2**(1.D0/3.D0)) RS=4.D0/((DSQRT(2.D0*G-C)+DSQRT(C))*(G+C)) COSTS=GAMMA_S*RS**2 SINTS=DSQRT(1.D0-COSTS**2) RHOS=RS*SINTS RHOS2=RHOS**2 ZS=RS*COSTS C c 1st loop: P=(RRC1+RHOS)**2+ZS**2+DD1**2 XK2=4.D0*RRC1*RHOS/P XK=SQRT(XK2) XKRHO12=XK*SQRT(RHOS) ! SEE NB#4, P.3 C XK2S=1.D0-XK2 DL=DLOG(1.D0/XK2S) ELK=1.38629436112d0+XK2S*(0.09666344259D0+XK2S*(0.03590092383+ * XK2S*(0.03742563713+XK2S*0.01451196212))) +DL* * (0.5D0+XK2S*(0.12498593597D0+XK2S*(0.06880248576D0+ * XK2S*(0.03328355346D0+XK2S*0.00441787012D0)))) ELE=1.D0+XK2S*(0.44325141463D0+XK2S*(0.0626060122D0+XK2S* * (0.04757383546D0+XK2S*0.01736506451D0))) +DL* * XK2S*(0.2499836831D0+XK2S*(0.09200180037D0+XK2S* * (0.04069697526D0+XK2S*0.00526449639D0))) C APHI1=((1.D0-XK2*0.5D0)*ELK-ELE)/XKRHO12 c c 2nd loop: P=(RRC2+RHOS)**2+ZS**2+DD2**2 XK2=4.D0*RRC2*RHOS/P XK=SQRT(XK2) XKRHO12=XK*SQRT(RHOS) ! SEE NB#4, P.3 C XK2S=1.D0-XK2 DL=DLOG(1.D0/XK2S) ELK=1.38629436112d0+XK2S*(0.09666344259D0+XK2S*(0.03590092383+ * XK2S*(0.03742563713+XK2S*0.01451196212))) +DL* * (0.5D0+XK2S*(0.12498593597D0+XK2S*(0.06880248576D0+ * XK2S*(0.03328355346D0+XK2S*0.00441787012D0)))) ELE=1.D0+XK2S*(0.44325141463D0+XK2S*(0.0626060122D0+XK2S* * (0.04757383546D0+XK2S*0.01736506451D0))) +DL* * XK2S*(0.2499836831D0+XK2S*(0.09200180037D0+XK2S* * (0.04069697526D0+XK2S*0.00526449639D0))) C APHI2=((1.D0-XK2*0.5D0)*ELK-ELE)/XKRHO12 APPRC=A1*APHI1+A2*APHI2 IF (PROX) APPRC=APPRC*SINT/SINT1 ! LINEAR INTERPOLATION, IF TOO CLOSE TO THE Z-AXIS C RETURN END C C@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ C C SUBROUTINE PRC_QUAD (X,Y,Z,BX,BY,BZ) C C CALCULATES COMPONENTS OF THE FIELD FROM THE "QUADRUPOLE" COMPONENT OF THE PRC C IMPLICIT REAL * 8 (A - H, O - Z) DATA D,DD/1.D-4,2.D-4/, DS/1.D-2/,DC/0.99994999875D0/ RHO2=X**2+Y**2 R=DSQRT(RHO2+Z**2) RHO=DSQRT(RHO2) SINT=RHO/R COST=Z/R RP=R+D RM=R-D IF (SINT.GT.DS) THEN CPHI=X/RHO SPHI=Y/RHO BR=BR_PRC_Q(R,SINT,COST) BT=BT_PRC_Q(R,SINT,COST) DBRR=(BR_PRC_Q(RP,SINT,COST)-BR_PRC_Q(RM,SINT,COST))/DD THETA=DATAN2(SINT,COST) TP=THETA+D TM=THETA-D SINTP=DSIN(TP) COSTP=DCOS(TP) SINTM=DSIN(TM) COSTM=DCOS(TM) DBTT=(BT_PRC_Q(R,SINTP,COSTP)-BT_PRC_Q(R,SINTM,COSTM))/DD BX=SINT*(BR+(BR+R*DBRR+DBTT)*SPHI**2)+COST*BT BY=-SINT*SPHI*CPHI*(BR+R*DBRR+DBTT) BZ=(BR*COST-BT*SINT)*CPHI ELSE ST=DS CT=DC IF (Z.LT.0.D0) CT=-DC THETA=DATAN2(ST,CT) TP=THETA+D TM=THETA-D SINTP=DSIN(TP) COSTP=DCOS(TP) SINTM=DSIN(TM) COSTM=DCOS(TM) BR=BR_PRC_Q(R,ST,CT) BT=BT_PRC_Q(R,ST,CT) DBRR=(BR_PRC_Q(RP,ST,CT)-BR_PRC_Q(RM,ST,CT))/DD DBTT=(BT_PRC_Q(R,SINTP,COSTP)-BT_PRC_Q(R,SINTM,COSTM))/DD FCXY=R*DBRR+DBTT BX=(BR*(X**2+2.D0*Y**2)+FCXY*Y**2)/(R*ST)**2+BT*COST BY=-(BR+FCXY)*X*Y/(R*ST)**2 BZ=(BR*COST/ST-BT)*X/R ENDIF RETURN END c c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& C DOUBLE PRECISION FUNCTION BR_PRC_Q (R,SINT,COST) C Calculates the radial component of the "quadrupole" part of the model partial ring current. C IMPLICIT REAL * 8 (A - H, O - Z) DATA A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17, ! ALL LINEAR PARAMETERS HERE * A18,XK1,AL1,DAL1,B1,BE1,XK2,AL2,DAL2,B2,BE2,XK3,XK4,AL3,DAL3,B3, ! WERE MULTIPLIED BY 0.1, * BE3,AL4,DAL4,DG1,AL5,DAL5,DG2,C1,C2,C3,AL6,DAL6,DRM/-21.2666329, ! SO THAT THEY CORRESPOND TO P_0=1 nPa, *32.24527521,-6.062894078,7.515660734,233.7341288,-227.1195714, ! RATHER THAN THE ORIGINAL VALUE OF 10 nPa *8.483233889,16.80642754,-24.63534184,9.067120578,-1.052686913, ! ASSUMED IN THE BIOT-SAVART INTEGRAL *-12.08384538,18.61969572,-12.71686069,47017.35679,-50646.71204, *7746.058231,1.531069371,2.318824273,.1417519429,.6388013110E-02, *5.303934488,4.213397467,.7955534018,.1401142771,.2306094179E-01, *3.462235072,2.568743010,3.477425908,1.922155110,.1485233485, *.2319676273E-01,7.830223587,8.492933868,.1295221828,.01753008801, *.01125504083,.1811846095,.04841237481,.01981805097,6.557801891, *6.348576071,5.744436687,.2265212965,.1301957209,.5654023158/ SINT2=SINT**2 COST2=COST**2 SC=SINT*COST ALPHA=SINT2/R GAMMA=COST/R**2 CALL FFS(ALPHA,AL1,DAL1,F,FA,FS) D1=SC*F**XK1/((R/B1)**BE1+1.D0) D2=D1*COST2 CALL FFS(ALPHA,AL2,DAL2,F,FA,FS) D3=SC*FS**XK2/((R/B2)**BE2+1.D0) D4=D3*COST2 CALL FFS(ALPHA,AL3,DAL3,F,FA,FS) D5=SC*(ALPHA**XK3)*(FS**XK4)/((R/B3)**BE3+1.D0) D6=D5*COST2 ARGA=((ALPHA-AL4)/DAL4)**2+1.D0 ARGG=1.D0+(GAMMA/DG1)**2 D7=SC/ARGA/ARGG D8=D7/ARGA D9=D8/ARGA D10=D9/ARGA ARGA=((ALPHA-AL5)/DAL5)**2+1.D0 ARGG=1.D0+(GAMMA/DG2)**2 D11=SC/ARGA/ARGG D12=D11/ARGA D13=D12/ARGA D14=D13/ARGA D15=SC/(R**4+C1**4) D16=SC/(R**4+C2**4)*COST2 D17=SC/(R**4+C3**4)*COST2**2 CALL FFS(ALPHA,AL6,DAL6,F,FA,FS) D18=SC*FS/(1.D0+((R-1.2D0)/DRM)**2) BR_PRC_Q=A1*D1+A2*D2+A3*D3+A4*D4+A5*D5+A6*D6+A7*D7+A8*D8+A9*D9+ * A10*D10+A11*D11+A12*D12+A13*D13+A14*D14+A15*D15+A16*D16+A17*D17+ * A18*D18 C RETURN END c C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C DOUBLE PRECISION FUNCTION BT_PRC_Q (R,SINT,COST) C Calculates the Theta component of the "quadrupole" part of the model partial ring current. C IMPLICIT REAL * 8 (A - H, O - Z) DATA A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17, ! ALL LINEAR PARAMETERS HERE *XK1,AL1,DAL1,B1,BE1,XK2,AL2,DAL2,BE2,XK3,XK4,AL3,DAL3,B3,BE3,AL4, ! WERE MULTIPLIED BY 0.1, *DAL4,DG1,AL5,DAL5,DG2,C1,C2,C3/12.74640393,-7.516393516, ! SO THAT THEY CORRESPOND TO P_0=1 nPa, *-5.476233865,3.212704645,-59.10926169,46.62198189,-.01644280062, ! RATHER THAN THE ORIGINAL VALUE OF 10 nPa *.1234229112,-.08579198697,.01321366966,.8970494003,9.136186247, ! ASSUMED IN THE BIOT-SAVART INTEGRAL *-38.19301215,21.73775846,-410.0783424,-69.90832690,-848.8543440, *1.243288286,.2071721360,.05030555417,7.471332374,3.180533613, *1.376743507,.1568504222,.02092910682,1.985148197,.3157139940, *1.056309517,.1701395257,.1019870070,6.293740981,5.671824276, *.1280772299,.02189060799,.01040696080,.1648265607,.04701592613, *.01526400086,12.88384229,3.361775101,23.44173897/ SINT2=SINT**2 COST2=COST**2 SC=SINT*COST ALPHA=SINT2/R GAMMA=COST/R**2 CALL FFS(ALPHA,AL1,DAL1,F,FA,FS) D1=F**XK1/((R/B1)**BE1+1.D0) D2=D1*COST2 CALL FFS(ALPHA,AL2,DAL2,F,FA,FS) D3=FA**XK2/R**BE2 D4=D3*COST2 CALL FFS(ALPHA,AL3,DAL3,F,FA,FS) D5=FS**XK3*ALPHA**XK4/((R/B3)**BE3+1.D0) D6=D5*COST2 CALL FFS(GAMMA,0.D0,DG1,F,FA,FS) FCC=(1.D0+((ALPHA-AL4)/DAL4)**2) D7 =1.D0/FCC*FS D8 =D7/FCC D9 =D8/FCC D10=D9/FCC ARG=1.D0+((ALPHA-AL5)/DAL5)**2 D11=1.D0/ARG/(1.D0+(GAMMA/DG2)**2) D12=D11/ARG D13=D12/ARG D14=D13/ARG D15=1.D0/(R**4+C1**2) D16=COST2/(R**4+C2**2) D17=COST2**2/(R**4+C3**2) C BT_PRC_Q=A1*D1+A2*D2+A3*D3+A4*D4+A5*D5+A6*D6+A7*D7+A8*D8+A9*D9+ * A10*D10+A11*D11+A12*D12+A13*D13+A14*D14+A15*D15+A16*D16+A17*D17 C RETURN END c c@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ SUBROUTINE FFS(A,A0,DA,F,FA,FS) IMPLICIT REAL * 8 (A - H, O - Z) SQ1=DSQRT((A+A0)**2+DA**2) SQ2=DSQRT((A-A0)**2+DA**2) FA=2.D0/(SQ1+SQ2) F=FA*A FS=0.5D0*(SQ1+SQ2)/(SQ1*SQ2)*(1.D0-F*F) RETURN END C C|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| C C SUBROUTINE RC_SHIELD (A,PS,X_SC,X,Y,Z,BX,BY,BZ) C C COMPUTES THE COMPONENTS OF THE SHIELDING FIELD FOR THE RING CURRENT C (EITHER PARTIAL OR AXISYMMETRICAL) C INPUT: A - AN ARRAY CONTAINING THE HARMONIC COEFFICIENTS AND NONLINEAR PARAMETERS C PS - GEODIPOLE TILT ANGLE IN RADIANS C X_SC - SCALING FACTOR ( X_SC>1 AND X_SC<1 CORRESPOND TO LARGER/SMALLER C RING CURRENT, RESP.) C X,Y,Z - POSITION IN RE (GSM COORDS) C OUTPUT: BX,BY,BZ - SHIELDING FIELD COMPONENTS (GSM) C IMPLICIT REAL * 8 (A - H, O - Z) DIMENSION A(86) C FAC_SC=(X_SC+1.D0)**3 C CPS=DCOS(PS) SPS=DSIN(PS) S3PS=2.D0*CPS C PST1=PS*A(85) PST2=PS*A(86) ST1=DSIN(PST1) CT1=DCOS(PST1) ST2=DSIN(PST2) CT2=DCOS(PST2) X1=X*CT1-Z*ST1 Z1=X*ST1+Z*CT1 X2=X*CT2-Z*ST2 Z2=X*ST2+Z*CT2 C L=0 GX=0.D0 GY=0.D0 GZ=0.D0 C DO 1 M=1,2 ! M=1 IS FOR THE 1ST SUM ("PERP." SYMMETRY) C AND M=2 IS FOR THE SECOND SUM ("PARALL." SYMMETRY) DO 2 I=1,3 P=A(72+I) Q=A(78+I) CYPI=DCOS(Y/P) CYQI=DCOS(Y/Q) SYPI=DSIN(Y/P) SYQI=DSIN(Y/Q) C DO 3 K=1,3 R=A(75+K) S=A(81+K) SZRK=DSIN(Z1/R) CZSK=DCOS(Z2/S) CZRK=DCOS(Z1/R) SZSK=DSIN(Z2/S) SQPR=DSQRT(1.D0/P**2+1.D0/R**2) SQQS=DSQRT(1.D0/Q**2+1.D0/S**2) EPR=DEXP(X1*SQPR) EQS=DEXP(X2*SQQS) C DO 4 N=1,2 ! N=1 IS FOR THE FIRST PART OF EACH COEFFICIENT C AND N=2 IS FOR THE SECOND ONE DO 5 NN=1,2 ! NN = 1,2 FURTHER SPLITS THE COEFFICIENTS INTO 2 PARTS, C TO TAKE INTO ACCOUNT THE SCALE FACTOR DEPENDENCE IF (M.EQ.1) THEN FX=-SQPR*EPR*CYPI*SZRK *FAC_SC FY=EPR*SYPI*SZRK/P *FAC_SC FZ=-EPR*CYPI*CZRK/R *FAC_SC IF (N.EQ.1) THEN IF (NN.EQ.1) THEN HX=FX HY=FY HZ=FZ ELSE HX=FX*X_SC HY=FY*X_SC HZ=FZ*X_SC ENDIF ELSE IF (NN.EQ.1) THEN HX=FX*CPS HY=FY*CPS HZ=FZ*CPS ELSE HX=FX*CPS*X_SC HY=FY*CPS*X_SC HZ=FZ*CPS*X_SC ENDIF ENDIF ELSE ! M.EQ.2 FX=-SPS*SQQS*EQS*CYQI*CZSK *FAC_SC FY=SPS/Q*EQS*SYQI*CZSK *FAC_SC FZ=SPS/S*EQS*CYQI*SZSK *FAC_SC IF (N.EQ.1) THEN IF (NN.EQ.1) THEN HX=FX HY=FY HZ=FZ ELSE HX=FX*X_SC HY=FY*X_SC HZ=FZ*X_SC ENDIF ELSE IF (NN.EQ.1) THEN HX=FX*S3PS HY=FY*S3PS HZ=FZ*S3PS ELSE HX=FX*S3PS*X_SC HY=FY*S3PS*X_SC HZ=FZ*S3PS*X_SC ENDIF ENDIF ENDIF L=L+1 IF (M.EQ.1) THEN HXR=HX*CT1+HZ*ST1 HZR=-HX*ST1+HZ*CT1 ELSE HXR=HX*CT2+HZ*ST2 HZR=-HX*ST2+HZ*CT2 ENDIF GX=GX+HXR*A(L) GY=GY+HY *A(L) 5 GZ=GZ+HZR*A(L) 4 CONTINUE 3 CONTINUE 2 CONTINUE 1 CONTINUE BX=GX BY=GY BZ=GZ RETURN END C c=========================================================================== c SUBROUTINE DIPOLE (PS,X,Y,Z,BX,BY,BZ) C C THIS IS A DOUBLE PRECISION ROUTINE, OTHERWISE IDENTICAL TO THE S/R DIP OF GEOPACK C C CALCULATES GSM COMPONENTS OF A GEODIPOLE FIELD WITH THE DIPOLE MOMENT C CORRESPONDING TO THE EPOCH OF 2000. C C------INPUT PARAMETERS: C PS - GEODIPOLE TILT ANGLE IN RADIANS, C X,Y,Z - GSM COORDINATES IN RE (1 RE = 6371.2 km) C C----OUTPUT PARAMETERS: C BX,BY,BZ - FIELD COMPONENTS IN GSM SYSTEM, IN NANOTESLA. C C LAST MODIFICATION: JAN. 5, 2001. THE VALUE OF THE DIPOLE MOMENT WAS UPDATED TO 2000. C AND A "SAVE" STATEMENT HAS BEEN ADDED, TO AVOID POTENTIAL PROBLEMS WITH SOME C FORTRAN COMPILERS C C WRITTEN BY: N. A. TSYGANENKO C IMPLICIT REAL*8 (A-H,O-Z) SAVE M,PSI DATA M,PSI/0,5.D0/ IF(M.EQ.1.AND.DABS(PS-PSI).LT.1.D-5) GOTO 1 ! THIS IS TO AVOID MULTIPLE CALCULATIONS SPS=DSIN(PS) ! OF SIN(PS) AND COS(PS), IF THE ANGLE PS CPS=DCOS(PS) ! REMAINS UNCHANGED PSI=PS M=1 1 P=X**2 U=Z**2 V=3.D0*Z*X T=Y**2 Q=30115.D0/DSQRT(P+T+U)**5 BX=Q*((T+U-2.D0*P)*SPS-V*CPS) BY=-3.D0*Y*Q*(X*SPS+Z*CPS) BZ=Q*((P+T-2.D0*U)*CPS-V*SPS) RETURN END C C@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@