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Abstract. This paper reviews the main advances in the
area of data-based modelling of the Earth’s distant magnetic
field achieved during the last two decades. The essence and
the principal goal of the approach is to extract maximum
information from available data, using physically realistic
and flexible mathematical structures, parameterized by the
most relevant and routinely accessible observables. Accord-
ingly, the paper concentrates on three aspects of the mod-
elling: (i) mathematical methods to develop a computational
“skeleton” of a model, (ii) spacecraft databases, and (iii) pa-
rameterization of the magnetospheric models by the solar
wind drivers and/or ground-based indices. The review is fol-
lowed by a discussion of the main issues concerning further
progress in the area, in particular, methods to assess the mod-
els’ performance and the accuracy of the field line mapping.
The material presented in the paper is organized along the
lines of the author Julius-Bartels’ Medal Lecture during the
General Assembly 2013 of the European Geosciences Union.

Keywords. Magnetospheric Physics (Magnetospheric con-
figuration and dynamics)

1 Introduction

The geomagnetic field is the principal agent connecting our
planet’s ionosphere with the highly variable interplanetary
medium, incessantly disturbed by dynamical processes at the
Sun. The Earth’s magnetosphere serves as a giant storage
reservoir of energy pumped in from the solar wind and in-
termittently spilled into the upper atmosphere during space
storms. As humankind becomes more and more dependent

on space technologies, it becomes increasingly important to
be able to accurately map the distant geomagnetic field and
predict its dynamics using data from upstream solar wind
monitors. Two approaches to the problem have been success-
fully pursued over recent decades. The first is to treat the
solar wind as a flow of magnetized conducting fluid and to
numerically solve first-principle equations, governing its in-
teraction with the terrestrial magnetic dipole. Based on pure
theory, that approach addresses the question: “What would
the magnetosphere look like and how would it behave if the
underlying approximations and techniques were universally
accurate?” This review focuses on the other, completely dif-
ferent approach, based on direct observations. Its essence is
to develop an empirical description of the global geomag-
netic field and its response to solar wind driving by fitting
model parameters to large multi-year sets of spacecraft data.
Models of that kind seek to answer the question: “What can
in situ measurements tell us about the global magnetospheric
configuration and its storm-time dynamics, provided our ap-
proximations are realistic, flexible, and the data coverage is
sufficiently dense and broad?” Five decades of spaceflight
have produced enormous amounts of archived data and a
whole suite of empirical models have already been developed
on that basis (e.g., McCollough et al., 2008, and references
therein). Recent and ongoing multi-spacecraft missions keep
pouring in new data and further expand the huge and yet
largely untapped resource of valuable information. The main
goal of such data-based modelling is to extract the largest
possible knowledge from the accumulated data, thus syner-
gistically maximizing the output of present and past space
experiments. Most of the existing models of this kind are
implemented as self-contained computer codes, available to
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in the case of the distantBE the situation is quite the op-
posite: the highly variable field occupying a huge domain
can be measured, in the best case, at only a few locations
at a time. Regretfully, the project to simultaneously monitor
the magnetosphere by a widely distributed swarm of 50–100
space probes (Angelopoulos et al., 1998) still remains in the
realm of dreams. The principal goal of empirical modelling
is to partially overcome this difficulty, by taking advantage of
the abundance of archived space magnetometer and plasma
instrument data from many past and ongoing missions, cov-
ering a wide variety of diverse magnetospheric events.

3 Mathematical framework of data-based models

If one likens empirical models to a building structure, then it
can be said to rest on three pillars. The first pillar is the math-
ematical framework, i.e., a set of equations representing con-
tributions to the total field of individual magnetospheric cur-
rent systems. The second pillar is the spacecraft and ground-
based data, used to determine optimal values of model pa-
rameters. The third pillar is the parameterization methods
and equations, relating the magnitudes and geometrical char-
acteristics of individual field sources, as well as their tempo-
ral dynamics, to routinely available parameters of the incom-
ing solar wind and/or ground geomagnetic activity indices.

This section outlines basic principles and methods to
mathematically represent contributions to the external field
from individual magnetospheric current systems. Most of
the following material corresponds to the advanced approach
that has been developed in the past decade (e.g., Tsyganenko,
2002a, b; Tsyganenko and Sitnov, 2005, 2007, and references
therein). It should be noted from the outset that, from the
viewpoint of physics, magnetospheric currents actually form
a single entity. Dividing them into separate components is
largely a matter of convenience, justified by the fact that dif-
ferent parts of the whole current system have different geom-
etry, differently respond to external driving, and have largely
different relaxation timescales. It has been commonly ac-
cepted to represent the net external fieldBE as a sum of con-
tributions from the ring current,BRC, tail current sheet,BTC,
large-scale field-aligned current systems,BFAC (including
both Region 1 and 2), and the magnetopause currents,BMP,
so that the total field

B = B I + BRC+ BTC + BFAC + BMP . (3)

Note that in all recent models (T96 and later) the above
expansion also included the so-called “interconnection” field
B INT , proportional to the transverse component of the IMF.
Adding that term was motivated by the well-known fact that
the IMF partially penetrates into the magnetosphere, most
conspicuously manifested in the correlation of theBy field
components (Fairfield, 1979; Cowley, 1981; Cowley and
Hughes, 1983; Sergeev, 1987). This question will be further
discussed in more detail in Sect. 8.1.

The magnetopause fieldBMP is not an independent term:
it is added to all other parts of the totalB vector to ensure
full confinement (or “shielding”) of the magnetospheric mag-
netic field inside the common model boundaryS, so that

B · n
∣∣
S

= 0 , (4)

wheren is unit normal vector to the magnetopause. Starting
from the T96 model (Tsyganenko, 1995, 1996), and in all
later data-based models, the magnetopauseS has been repre-
sented by an independently pre-defined empirical surface, fit-
ted to data of boundary crossings by satellites, which makes
the boundary condition Eq. (4) linear with respect toB. This
prompts us to split the termBMP into a sum of partial fields,
each of which serves as a shielding field for the correspond-
ing term (of the first four) in the right-hand side of Eq. (3),
so that the total field reads

B = (B I + BMP,I) + (BRC+ BMP,RC) + (BTC + BMP,TC)

+(BFAC + BMP,FAC) , (5)

where each of the four paired terms is independently shielded
within the boundary. As detailed in the following sections, a
natural way to increase the model’s flexibility is to further
expand the partial fieldsBRC, BTC, andBFAC, representing
them as linear combinations of independent normalized vec-
tor fields b

(k)
RC, b

(k)
TC, andb

(k)
FAC, paired with their respective

shielding fieldsh(k)
RC, h

(k)
TC, andh

(k)
FAC. As a result, in the most

general case the field of each (ith) source assumes the generic
form of an expansion

Bi =

Ki∑
k=1

a
(k)
i

[
b

(k)
i

(
r, {α

(k)
i }

)
+ h

(k)
i

(
r, {α

(k)
i }

)]
, (6)

where eachkth term in the sum includes a linear coefficient
a

(k)
i and a set of nonlinear parameters{α

(k)
i }, quantifying

the magnitude and geometrical properties of the partial field
source, as well as its response to the model’s input quan-
tities, including the geodipole tilt angle9, the solar wind
speed and dynamic pressurePdyn, the interplanetary mag-
netic field (IMF), and related external driving variables. Each
term in Eq. (6) satisfies the shielding condition at the magne-
topauseS(
b

(k)
i + h

(k)
i

)
· n

∣∣
S = 0 , (7)

which is the principal advantage of the approach, since it
makes it possible to independently vary the parameters of in-
dividual magnetospheric field sources and, at the same time,
keep the total field fully shielded insideS for any values of
the coefficients{a(k)

i } and (within a certain finite range) of

the variable nonlinear parameters{α
(k)
i }.

The first pair of terms in Eq. (5), corresponding to the
shielded Earth’s main field, is treated separately. The inter-
nal field B I is known in advance with great accuracy from
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IGRF expansions, and, once a model magnetopause shape
and size is known, the corresponding shielding fieldBMP,I
can be uniquely obtained in a straightforward way. Since the
magnetopause is located relatively far from Earth, all higher-
order harmonics of the main field are small there, so thatB I
can be accurately approximated by a purely dipolar field and,
hence, the only quantities that controlBMP,I are the dipole
tilt angle 9 and the solar wind parameters that define the
size and shape of the model boundary. In Sect. 3.4 we will
address the derivation of the shielding fields in greater detail.

3.1 Equatorial magnetospheric currents and
their magnetic field

From a global viewpoint, the observed magnetospheric
B field structure is shaped by two plasma domains: (i) the
magnetosheath and the polar cusps (which themselves can
be viewed as extensions of the magnetosheath inside the day-
side magnetosphere), and (ii) the nightside equatorial region,
from the outer boundary of the inner magnetosphere to the
distant tail plasma sheet. In the empirical approach to mag-
netic field modelling we disregard the issue of consistency
between the magnetic field and plasma pressure (that sub-
ject is addressed in more detail in Sect. 7) and represent the
model field by a formal superposition of analytically simple
modules.

Physically, the inner ring current and the more distant tail
current sheet form a single equatorial current. In a topolog-
ical sense, the difference between the two is that the ring
current flow lines encircle Earth and are fully closed in-
side the magnetosphere, whereas the tail currents flow in
the azimuthal direction within a limited sector of longi-
tudes and then close via the magnetopause, forming “theta”-
shaped current loops. Nevertheless, when constructing a fully
shielded magnetic field model, both the ring and tail currents
can be regarded as laterally unbounded equatorial sources,
extending arbitrarily far beyond the magnetopause.

This is illustrated in Fig. 1, where the top pair of pan-
els show spatially unrestrained electric current flow lines
(red traces in the 3-D view on the left) and corresponding
lines of the unshielded magnetic fieldBTC in the noon–
midnight meridian plane (blue traces on the right), extending
beyond the model magnetopause (grey-shaded surface and
purple line). Adding the fieldBMP,TC results in full confine-
ment of the shielded field within the magnetopause, so that
the total normal component

(
BTC + BMP,TC

)
· n

∣∣
S

= 0 ev-
erywhere on the boundary. Now the magnetic field (hence
the electric currents) outside the magnetosphere can be nul-
lified without violating Maxwell’s equations; the resulting
jump in the previously continuous tangential field compo-
nent will correspond to a surface current, exactly equal to that
needed to redirect the equatorial current and close it over the
boundary, as illustrated in the bottom panels of Fig. 1. The
above described “gedanken experiment” was first realized

Fig. 1. (Top) Unbounded currents (red) and unshieldedB field lines
(blue). (Bottom) Adding the shielding field results in current closure
via the magnetopause (grey shading) and fully confined magnetic
field.

by Stern (1987, Appendix A) and further substantiated by
Sotirelis et al. (1994).

3.1.1 Modelling the ring current field

The ring current is a principal source of the external field in
the inner magnetosphere, in particular during storms when
it dramatically grows in magnitude and becomes strongly
asymmetric due to the formation of a duskside partial
ring current. In early empirical models (Tsyganenko and
Usmanov, 1982; Tsyganenko, 1987, 1989; henceforth, TU82,
T87, and T89) the ring current field was represented by a
very compact two-parameter axisymmetric module, based
on a simple modification of the dipolar vector potential,
expressed in cylindrical coordinates{ρ,φ,Z} asA = Aeφ ,
with A = 4B0ρ

3
0ρ(Z2

+ ρ2
+ 4ρ2

0)−3/2. The model was pa-
rameterized by the scale radiusρ0 and the scale intensityB0,
equal to the model field magnitude at the origin. In the later
T96 model, both the ring and tail current fields were repre-
sented by more sophisticated potentials (see Sect. 3.1.2 be-
low), arranged in combinations of several terms in order to
confine the currents within a limited range of radial distance
and theZ coordinate.

The above-referenced solutions can be used as building
blocks in constructing more realistic fields, taking into ac-
count, for example, the eastward current due to the positive
radial gradient of the particle pressure in the innermost re-
gion atr ≤ 2− 3 RE. Unfortunately, all these models are ax-
ially symmetric, while, as already said, the actual ring cur-
rent can develop a strong asymmetry during storms. The
azimuthal asymmetry of the particle pressure results in the
divergence of the equatorial current and formation of field-
aligned, or Birkeland, currents. As a result, the problem be-
comes three-dimensional, and to devise a realistic solution
we need to turn to theory.
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Since the ring current flows relatively close to Earth, where
the total magnetic field is not drastically different from its
main (dipolar) component, one can calculate the drift and
magnetization electric current densitiesjd andjm as

jd =
Bo

B3
o

×

[
P⊥∇Bo +

P‖

Bo

(Bo · ∇)Bo

]
, (8)

jm = −∇ ×

(
P⊥

B2
o

Bo

)
, (9)

where the perpendicular and parallel particle pressures
P⊥(re,φ) andP‖(re,φ) are a priori defined as functions of
the equatorial radial distancere and the longitudeφ. Note
that, strictly speaking, the pressuresP⊥(re,φ) andP‖(re,φ)

and the “background” magnetic fieldBo should be mutually
consistent, in other words, must form a force-balanced con-
figuration. Nevertheless, in the low-beta approximation, one
still can use Eqs. (8) and (9) to roughly calculate the currents
in an apriori prescribed magnetic field.

Thus obtained currents are then used to evaluate the as-
sociated disturbance magnetic field. That problem was ad-
dressed in many works, starting from the pioneering study
by Akasofu and Chapman (1961), and followed by success-
ful attempts to iteratively derive higher-order solutions, tak-
ing into account the perturbation field of the ring current it-
self (e.g., Sckopke, 1972, and references therein). All those
studies used a purely dipolar background field as a starting
approximation for the background fieldBo, and employed
the above gyrotropic equations (8)–(9) for the electric cur-
rents. A notable exception in this sense was a work by Lack-
ner (1970), based on a more general Vlasov formalism.

The first problem with the above models is that they
were limited to axially symmetric plasma configurations with
∂P⊥/∂φ = ∂P‖/∂φ = 0 and, for that reason, they did not in-
clude FACs. The FACs can be evaluated (e.g., Birmingham,
1992a, b) by integrating the divergence of the drift current
along a field line connecting the points, where the current
j‖ is to be calculated, with a magnetically conjugate loca-
tion e in the equatorial plane

j‖ = −Bo(s)

s∫
e

ds′

B(s′)
∇ · jd(s

′) . (10)

However – and this is the second problem – for the purposes
of data-based field modelling, it is not enough to simply nu-
merically evaluate the magnetic field of the ring current. This
is only the first step, while the greatest challenge and the fi-
nal goal is to obtain a reasonably compact and flexible global
analytical description of the disturbance field, which can be
fitted to satellite data. Both the above issues were first ad-
dressed in (Tsyganenko, 2000), where azimuthally asymmet-
ric particle pressure distributions were used to calculate the
first-order drift, magnetization, and field-aligned currents.

The essence of the approach was to separately represent
the symmetric and partial components of the ring current,

by specifying for each part its own distribution of the equa-
torial plasma pressure. The symmetric ring current (SRC)
was treated as a basic permanent feature of the inner mag-
netosphere, and the corresponding radial distribution of the
plasma pressure was assumed in the form of smooth ana-
lytical approximations forP (SRC)

⊥
(re) and for the anisotropy

parameterγ (re) = P
(SRC)
⊥

/P
(SRC)
‖

. Both profiles were fitted
by least squares to quiet-time experimental curves by Lui and
Hamilton (1992), in which the pressure peaks atre ∼ 2.8 RE.
Storm-time variations were supposed to be reproduced by
varying the magnitude and scaling the size of the SRC.

Unlike the SRC, the partial ring current (PRC) develops to
its full extent only during active periods, owing to enhanced
plasma convection from the tail. For that reason, the PRC-
related pressureP (PRC) was assumed to be isotropic and
peaked at larger distances, aroundre ∼ 6–7RE. Its variation
with longitudeφ was represented by a sum of lowest-order
Fourier terms, so that

P (PRC)(re,φ) = P
(PRC)
0 (re) [1+ εcos(φ − φ0)] , (11)

where the radial variation is factored out inP (PRC)
0 (re), the

parameterε controls the degree of azimuthal asymmetry,
and the phase angleφ0 defines the longitude of the PRC
peak. Figure 2 illustrates the configuration of electric current
flow lines, obtained from Eqs. (8)–(11) as a superposition of
the axisymmetric and “quadrupole” PRC components, corre-
sponding to the first and second bracketed terms in the pres-
sure Eq. (11).

The current densities were calculated using a purely dipo-
lar background magnetic fieldBo, which eliminated the need
to numerically trace the field lines in the calculation of the
electric currents from Eqs. (8)–(11). In addition, the axial
symmetry of the dipolarBo, combined with the purely har-
monic azimuthal variation of the pressure in Eq. (11) made
it possible to reduce the problem to 2-D. These two factors
allowed us to represent the SRC and PRC fields using com-
putationally fast analytical approximations, included later on
in the T02 (Tsyganenko, 2002a, b) and TS05 (Tsyganenko
and Sitnov, 2005) empirical models. Their relative simplic-
ity, however, came not without a price: using a purely dipolar
background field resulted in inaccurate mapping between the
equatorial PRC and Region 2 (R2) FACs at low altitudes. An
advanced PRC model based on a realistic asymmetric back-
ground field (Tsyganenko, 2013, referred to henceforth as
T13) yields more accurate results, but demands much more
computing resources.

3.1.2 Modelling the magnetic field of the tail current

There exists a wide variety of analytically simple magnetic
fields associated with planar current sheets and disks. One
can start, for example, from the simplest source in the form
of a straight linear current, flowing in the equatorial plane
parallel to theYGSM axis atX = X0, which spreads out in
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P (PRC)(re,φ) = P
(PRC)
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where the radial variation is factored out in P
(PRC)
0 (re), the parameter ε controls the degree of
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sition of the axisymmetric and ‘quadrupole’ PRC components, corresponding to the first and second

bracketed terms in the pressure equation (11). The current densities were calculated using a purely

Fig. 2. Electric current flow lines, corresponding to the symmetric (left) and ‘quadrupole’ (centre) components

of the model PRC, and the resultant total configuration (right), calculated from Eqs. (8)–(11).

dipolar background magnetic field Bo, which eliminated the need to numerically trace the field

lines in the calculation of the electric currents from Eqs.(8–11). In addition, the axial symmetry of

9

Fig. 2. Electric current flow lines, corresponding to the sym-
metric (left) and “quadrupole” (centre) components of the model
PRC, and the resultant total configuration (right), calculated from
Eqs. (8)–(11).

space over a scale half-thicknessD. Its field can be rep-
resented by the elementary vector potential dA = dAyey ,
where dAy ∼ ln[(X − X0)

2
+ Z2

+ D2
]. Integrating it over

X0 with different weight functionsI (X0) provides a fam-
ily of simple analytical fields, corresponding to spread-out
current sheets with a finite half-thicknessD, with various ra-
dial profiles of the electric current densityI (X). In the TU82
model, a linear variation ofI (X0) was assumed between the
inner and outer edges of a planar current sheet, which yielded
a simple magnetotail field module. A more sophisticated hy-
perbolic form ofI (X0) was adopted in the T87 model, which
made it possible to extend its validity range further out into
the distant tail.

Several other simple functionsI (X0) can be found, which
yield the corresponding magnetic field components in a
closed form. One example is a bell-shaped current density
profile, centered atX = Xm

I (X0) = Im

[
1+

(
X0 − Xm

1X

)2
]−1

, (12)

which results in a compact vector potential with only anAy-
component in the form

Ay ∼

1X ln
[
1X2

+ 21X
√

Z2 + D2 + (Xm − X)2
+ Z2

+ D2
]

. (13)

Dividing Eq. (13) by 1X and differentiating the result with
respect to that parameter yields another solution, which dif-
fers from the original one by much steeper slopes of the bell-
shaped profile. Such a current “slab” module was used in the
T13 model to improve its flexibility in the dayside sector.
Note that the parameterD in Eq. (13) can be assumed to be a
function of coordinates, making it possible to model spatial
variations of the current sheet thickness.

Another family of remarkably simple analytic solutions
for the magnetic field, widely used in empirical modelling,
is associated with axially symmetric disk-like equatorial dis-
tributions of the electric current (Tsyganenko, 1989, 1990).
It is derived by equating to zero the electric current density
outside an infinitely thin current sheet, expressed in cylindri-
cal coordinates{ρ,φ,Z} via the azimuthal component of the
vector potentialA = A(ρ,Z)eφ . A general solution of the
corresponding 2nd-order equation∇ × (∇ ×A) = 0 reads

A(ρ,Z) =

∞∫
0

C(K)exp(−K|Z|)J1(Kρ)K1/2dK , (14)

from which the weight functionC(K) is derived by apply-
ing Bessel’s transform to theBz-component of the equato-
rial field, corresponding to the potential Eq. (14). Specify-
ing Bz(ρ) as a simple bell-shaped profile of the magnetic
field depression centred at the origin,Bz(ρ) ∼ (ρ2

+a2)−1/2,
leads to a compact solution for the potential

A(1)
=

ρ

S + |Z| + a
, (15)

where the parametera defines a characteristic scale length of
the current density radial profile, andS =

√
ρ2 + (|Z| + a)2.

Due to the presence of|Z|, the above potential exhibits a
kink at the planeZ = 0, corresponding to infinitely thin
current sheet. Replacing|Z| by ζ =

√
Z2 + D2 spreads the

thin sheet over a finite bell-shaped profile with a scale half-
thicknessD, which can be further made a function of co-
ordinates, allowing one to model magnetic fields of current
disks with a variable thickness. Successive differentiation of
Eq. (15) with respect toa yields a sequence of independent
vector potentials with progressively faster rates of asymptotic
decrease of the current with growing radial distance. Final
equations for the first three potentialsA(1), A(2), andA(3)

are

A(1)
=

ρ

S + ζ + a
A(2)

=
∂A(1)

∂a
= −

A(1)

S

A(3)
=

∂A(2)

∂a
=

ρ

S3
. (16)

To save page space, we omit the corresponding equations for
the field components, which can be easily derived by calcu-
lating∇ ×A.

The set of solutions described above can be either directly
used to generate independent modulesb

(k)
i in Eq. (6), or can

be first arranged into linear combinations with the coeffi-
cients and scale lengths defined in such a way that they form
a set of ad hoc modules with desirable radial profiles of the
electric current. The latter approach was adopted in the T96,
T02, and TS05 models, though using somewhat different ba-
sic potentials.

The rapidly growing volume of archived space magne-
tometer data suggests the need to look for ways to en-
hance the models’ capability to ingest new information and
reproduce the structure of the magnetosphere in more de-
tail. In the modelling of the main geomagnetic field, this
can be done simply by adding more higher-order harmon-
ics into the scalar potential expansion (2). An interesting
and important question is whether a similar approach could
be developed and implemented in the external field mod-
elling. The first step in that direction was made by Tsyga-
nenko and Sitnov (2007), who devised the TS07D model,
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